Name \qquad

1. a. Express the volume V of a sphere as a function of its radius r .
b. If the name of the function in part a is f, write what $f(r)$ is and find the value of $f(6)$.
c. Express the radius r of a sphere as a function of its volume V .
d. If the name of the function in part c is g , write what $\mathrm{g}(\mathrm{V})$ is and find the value of $\mathrm{g}(75.3)$.
2. a. Find the domain of $f(x)=\frac{1}{(x-1)(x+4)}$ by inspection.
b. Evaluate $f(3)$ and $f(a)$ from part a.
c. Find the domain and range of $\mathrm{g}(\mathrm{x})=\sqrt{(x+3)}+5$ using the graphing calculator. Transfer the graph to this paper.
d. Evaluate $g(6)$ and $g(6000)$ from part c above.
3. Consider the piecewise defined function $f(x)=\left\{\begin{array}{cc}\frac{1}{x-1} & \text { for } x<0 \\ \sqrt{x+1} & \text { for } x \geq 0\end{array}\right\}$.
a. Plot the graph of f using the graphing calculator and transfer the graph to this paper.
b. Evaluate $f(3)$ and $f(-3)$.
4. Consider the function given by $g(x)=x^{2}-3 x$.
a. Manually form a T-table with at least 6 entries and manually sketch the graph of the function g.
5. On the same set of axes,
a. graph all points where $x=-2$,
b. graph all points where $\mathrm{y} \geq 4$.
6. Use a graphing calculator to do the following.
a. Graph the function $y=9 \sqrt{x}+1 / x$ in a window that will show its shape well and transfer the graph to this paper.
b. Find the range of the function given by $\quad y=9 \sqrt{x}+1 / x$
c. Solve the equation $10=9 \sqrt{x}+1 / x$ using the graphing calculator.
7. Consider the following table that gives wind chill at various wind speeds for air temperature 30 degrees F .

$\mathrm{W}=$ Wind Speed (mi/hr)	5	10	15	20	25	30	35
$\mathrm{~T}=$ Temperature Felt (deg F)	27	16	9	4	1	-2	-4

a. Plot a graph of the data.
b. Use linear interpolation to find the wind speed for $\mathrm{T}=20$ degrees F .
c. Use linear interpolation to find the temperature felt for $\mathrm{W}=11 \mathrm{mi} / \mathrm{hr}$.

