1. Define derivative of a function \mathbf{f}. (Copy it word for word from the tex.)
2. Given this graph of $y=f(x)$ having a vertical tangent, a cusp and a corner, draw the graph of $y=f^{\prime}(x)$.

3. Calculate the derivative of
$f(x)=\frac{2 x-3}{4 x+1}$
by the defir
i.e., using the limit of the difference quotient.
4. Sketch a graph of a function f that has these given values of f and f '. Label the axes with numbers.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$	$\mathbf{f}^{\prime}(\mathbf{x})$
1		-1
2		0
3	1	1
4		2
5		0

5. Estimate the values of f ' numerically from the values of the function f .

\mathbf{x}	$\mathbf{f}(\mathbf{x})$	$\mathbf{f}^{\prime}(\mathbf{x})$
16	300	
20	340	
24	360	
28	370	
32	370	
36	350	

6. Differentiate the following using the power rule.

$$
\begin{aligned}
& y=f(x)=9 x^{5}+4 x-7+2 x^{-5}+\frac{4}{x^{3}} \\
& f^{\prime}(x)= \\
& f^{\prime \prime}(x)=
\end{aligned}
$$

7. Apply the rules (of theorems) of differentiation: sum, difference, product, quotient, power, constant factor. Differentiate these functions and simplify the result.
a. $f(x)=\frac{2 x^{5}+4 x}{3 x-1}$
b. $g(x)=\left(2 x^{5}+4 x\right)(3 x-1)$
$f^{\prime}(x)=$
$g^{\prime}(x)=$
8. Take derivatives involving these trigonometric functions.
a. $\frac{d}{d x} \frac{\cos x}{x}$
b. $\quad D_{x}\left(x^{3} \cdot \tan x\right)$
9. Apply the chain rule to find $\mathrm{h}^{\prime}(\mathrm{x})$ and simplify the result.
a. $\quad h(x)=\left(5 x^{2}-4 x\right)^{7}$
b. $\quad h(x)=\cos ^{4}\left(x^{3}\right)$
c. $\quad h(x)=\frac{\sin x}{\cos ^{4} x}$
10. Apply the chain rule to $y=\sqrt{u+4}, u=2 x^{2}+5 x, x=t^{3}-5 t$
a. $\frac{d y}{d x}$
b. $\frac{d y}{d t}$
11. Differentiate the implicitly defined function to find and solve for $\frac{d y}{d x}$. Then find the equation of the tangent line at the point $(1,0)$.

$$
x^{2} y^{5}-4 y^{3}+6 y=x^{2} \sin (y)-4 x
$$

12. Solve this related rates problem:

A man on a dock is pulling in a boat using a rope attached to the bow of the boat 1 ft above water level and passing through a simple pulley located on the dock 8 ft above the water level. If he pulls in the rope at rate of $3 \mathrm{ft} / \mathrm{sec}$, how fast is the boat approaching the dock when the bow of the boat is 24 ft from a point that is directly below the pulley?

13. Draw a diagram depicting $x, y, d x, d y, \Delta x$ and Δy for a function f and describe each one with a phrase.
14. If $y=f(x)=5\left(3 x^{3}-4 x\right)^{4}$, find $d y$, the differential of y.
15. Find this limit. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x \cos (x)}$
16. A spherical balloon is being inflated with gas. Use differentials to approximate the increase in surface area of the balloon if the radius changes from 3 ft to 3.05 ft .
17. Considering the function $y=f(x)=3 x^{2}-2 x+1$, do each of the following 6 items.
a. Find the slope of the secant line $\left(m_{\text {sec }}\right)$ passing through the curve $y=f(x)$ at the x-values 2 and 2.3.
b. Find the slope of the tangent line $\left(m_{\tan }\right)$ at the x-value 2 .
c. Give the equation of the secant line in part a above.
d. Give the equation of the tangent line in part b above at $x=2$.
e. Suppose $s=f(t)=3 t^{2}-2 t+1$ gives position s in feet of an object in terms of time t in seconds. Give the average velocity between time $t=2$ and 2.3 seconds.
f. Give the instantaneous velocity v of the object at time 2 seconds.
18. MATCH EACH FUNCTION IN SECTION A WITH ITS DERIVATTVE IN SECTION B

