1. Use integration by parts to evaluate these integrals.
a. $\int_{0}^{1} \cot ^{-1} x d x$
b. $\int x^{2} e^{5 x} d x$
c. $\int x \tan ^{-1} x d x$
2. Integrate these three trigonometric integrals.
a. $\int \tan ^{6} x \sec ^{6} x d x$
b. $\int \sin ^{2} 3 x \cos ^{2} 3 x d x$
c. $\int \tan ^{3} x \sec ^{3} x d x$
3. Evaluate these integrals by trigonometric substitution.
a. $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$
b. $\int \frac{\sqrt{x^{2}-9}}{x^{4}} d x$
4. Evaluate these integrals by partial fractions.
a. $\int \frac{2 x-1}{(x+4)(x-1)(x-3)} d x$
b. $\int \frac{x^{3}+5 x^{2}-8 x+7}{x^{2}-3 x+2} d x$
c. $\int \frac{3 x^{2}-4 x+5}{(x-1)\left(x^{2}+1\right)} d x$
5. Write out the form for a partial fractions decomposition for this rational function using the letters A through I in the numerators. Do not solve for the numerical values for the letters.

$$
\frac{1}{x^{2}(x-5)^{3}\left(x^{2}+16\right)^{2}}
$$

6. For the integral

$$
I=\int_{1}^{4} x^{1 / 2} d x
$$

do the following.
a. Find $\mathrm{T}_{6}, \mathrm{M}_{6}$ and S_{6}.
b. Find bounds for the errors E_{T}, E_{M} and E_{S} for $n=6$.
c. Find T_{3} and M_{3} and demonstrate that $\quad S_{6}=\frac{1}{3} T_{3}+\frac{2}{3} M_{3}$.
d. Calculate the value of $I=\int_{1}^{4} x^{1 / 2} d x$ using the Fundamental theorem of Calculus.
e. Make a table for $\mathrm{n}=6$ showing and labeling
(1) the actual values of T_{6}, M_{6}, S_{6} and I.
(2) the actual errors in T_{6}, M_{6} and S_{6}.
(3) the calculated bounds for the errors E_{T}, E_{M} and E_{S}
(4) the relative errors.
f. Find the size of n so that the error bounding E_{S} is less than 0.0001.
7. Determine whether the improper integrals converge or diverge.
a. $\int_{2}^{\infty} \frac{1}{(x-1)^{3 / 2}} d x$
b. $\quad \int_{1}^{2} \frac{1}{(x-1)^{3 / 2}} d x$
c. $\int_{0}^{\infty} x e^{-x} d x$
d. $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$

