Name \qquad

1. Given the function and its power series below, use several power series operations in a row to find the series for the desired function at the bottom of the page. Tell which operations are used.

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

$$
\frac{d}{d x} \frac{x^{5}}{1+x^{3}}
$$

2. Given the function and its power series below, use several power series operations in a row to find the series for the desired function at the bottom of the page. Tell which operations are used.

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

3. Find the radius of convergence and the interval of convergence for the power series below.

$$
\sum_{n=0}^{\infty} \frac{5^{n}}{2^{n}(n+1)}(x-4)^{n}
$$

4. Consider the function $f(x)=\frac{1}{x^{2}} \quad$ and the value $a=1$.
a) Give the Taylor polynomial $\mathrm{P}_{4}(\mathrm{x})$ expanded about $\mathrm{a}=1$.
b) Give the remainder $R_{4}(x)$.
c) Approximate $\frac{1}{(1.6)^{2}} \quad$ using $\mathrm{P}_{4}(\mathrm{x})$ above.
d) Give an upper bound for $\left|R_{4}(1.6)\right|$ using Taylor's inequality.
e) Give the infinite Taylor series in sigma notation.
5. Use the binomial series to expand the function $f(x)=\frac{1}{\sqrt{1-x^{2}}}$ as a power series. State the radius of convergence. Then integrate the function and its power series to find a power series for the inverse sine function.
