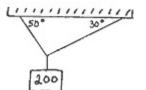
Math 201

Name _____

Please show all the work that you would want me to consider in grading an hour quiz.

- 1. A taut wire is connected from a point A=(2,0,5) to a point B=(6,12,8).
 - a. Give the vector **v** that runs along the wire from A to B.
 - b. Find the length of the wire.
 - c. Give the vector **w** from the origin to a point on the wire 2/5 of the way from A to B.

- d. Give a unit vector **u** along the wire.
- e. Write the vector **v** in terms of the standard basis vectors **i**, **j** and **k**.
- Suppose a constant force F = <1,2,3> is applied to drag a pulley along the full length of f. the wire. Find the work done.


2. Describe and/or sketch the region in R^3 determined by the inequality, $3 \le x \le 4$.

3. Describe and/or sketch the region in R³ determined by the equation, $x^2 + y^2 + z^2 - 2x + 12y - 8z = 11$.

4. Give inequalities that determine the upper solid hemispheroid obtained from a solid spheroid with center (2,1,-4) and radius 5.

- 5. For these vectors and scalars, **a**=<1,3,5> **b**=<6,-1,2> **c**=<2,0,4> d=4 e=-2, calculate all of the following.
 - a. **a + b**
 - b. **a b**
 - c. d **a**
 - d. d**a** + e b
 - e. **a b**
 - f. **a** X **b**
 - g. |**a** X **b**|
 - h. comp **b**
 - i. proj **a** b
 - j. the area of the triangle determined by **a** and **b** in standard position.
 - k. the volume of the parallelopiped determined by **a**, **b** and **c** in standard position.
 - I. the direction cosines and direction angles of **a**.

6. Find the tension in the two wires holding the 200 pound weight below.

7. For the two vectors **a** and **b** in the diagram below, draw **a**+ **b**, **a** - **b** and 2**a**+3**b**.

2 5

- 8. For the vector $v = \langle 2, 5, 1 \rangle$ and the point P = (1,4,6),
 - a. Give the three forms of the equation of the line parallel to **v** and passing through P.

b. Give the equation of the plane perpendicular to \mathbf{v} and passing through P.

c. Tell the geometric relationship of the line and the plane above.

- 9. Given the parametric equations, x=1+2t, y=3+0t, z=5+6t, of a line L and the equation, 2x+3y 2z =17 of a plane Q,
 - a. Find the intersection point P of the line L with the plane Q.

- b. Find the vector **n** normal to the plane Q.
- c. Find the vector **v** parallel to the line L.
- d. Find the angle between \mathbf{n} and \mathbf{v} .

e. Find the smallest angle between the line L and the plane Q.

9. f. Find the shortest distance from the point P=(2,5,10) to the plane Q.

- 10. Describe, sketch and name these plane and quadric surfaces in R^3 .
 - a. $x^2 + 4y^2 + z^2 = 16$

10. b. $x^2 + 4y^2 - z^2 = 16$

c. $x^2 - 4y^2 - z^2 = 16$

d. $x^2 + 4y^2 - z^2 = 0$

e. $x^2 + 4y^2 - z = 16$

f. $x^2 - 4y^2 - z = 16$

g. x + 4y + z = 16

h. $x^2 + 4y^2 = 16$

i. $4y^2 + z^2 = 16$

j. x^2 - $z^2 = 16$