1. Determine as best you can whether this limit exists and if so, find it. Draw your conclusion after testing with a line, a parabola, a cubic and a quartic that pass through the origin.

lim	$12x^4y$
$(x,y) \rightarrow (0,0)$	$\overline{x^8 + y^2}$

2. a. Graph several of the level curves of the function below on the axes below.

$z = f(x,y) = y^2 - x$	У
	+
	+
	+
	+
	+
	+
	+
	+
	+ + + + + + + + + + + + + + X
	+
	+
	+
	+
b. Now describe and graph the	+
surface $z = f(x, y)$.	+
	+
	+

4. Determine whether f(x,y) in problem 3 above is continuous over its entire domain and give the reason for your conclusion.

- 5. For the function $z = f(x,y) = e^{3x} \cdot y^5 + sin(x) cosh(3y) + 5$
 - a. Give the partial derivative b. Give $f_x(x,y)$ of z with respect to y.

c. Give the second partial of z with respect to y second.

d. Give $f_{xy}(x,y)$

5. Continued

e. Suppose that the x and y in the function f are given by

 $x = 5t^3 - 2$ and $y = 2t^4 + 3t$.

Give the derivative of z with respect to t using the chain rule. Do not substitute for x and y.

f. If $x = 3\cos(t)^{*}\ln(s)$ and $y = t^{4} + s^{3}$, give the partial of z with respect to t. Do not substitute for x and y.

6. Use implicit differentiation to find $\partial z/\partial x$ in the equation $x^3z + 5xy + 3y \sin(z) = 2z^2$.

7. For a surface z = g(x,y), explain the distinction between Δz and dz. Give formulas for each and a geometric explanation.

8. Work this exercise about wave heights from Stewart: Section 14.3 #4.

9. Work this exercise about a contour map from Stewart: Section 14.3 #10.

- 5
- 10. For the function $z = f(x,y) = x^3 y^5 + 2x 7y$
 - a. Give **grad** f at (x,y).
 - b. Give a vector normal to the surface at the point on the surface where x=2 and y=1.
 - c. Give the equation of the plane tangent to z = f(x,y) at the point on the surface where x=2 and y=1.

- d. Give a vector (actually a vector function) which gives the normal to the level curve 7 = $x^3 y^5 + 2x 7y$ at each (x,y) on the level curve.
- e. Give the directional derivative D_{u} f in the direction <12,-5>at the point where x=2 and y=1.

- f. Give the direction (in the xy-plane) in which the surface (and thus the tangent plane to the surface) at (2,1) is steepest.
- g. Give the steepest slope of the tangent plane at (2,1).

12. For the function $f(x,y) = 5 + 4x - 2x^2 + 3y - y^2$ defined on the triangular region D bounded by the lines y=-x, y=x and y=2, find the absolute maximum and absolute minimum values and the points at which they occur. Make a table that lists all critical values inside D, on the boundary of D and the corners of D.

13. Use the method of Lagrange Multipliers to find the point on the plane 6x + 4y - 2z = -58 that is closest to the point (2,-1,5). (Hint: Minimize the square of the distance from (2,-1,5) to a typical point (x,y,z) on the plane.)