Name \qquad

1. Determine as best you can whether this limit exists and if so, find it. Draw your conclusion after testing with a line, a parabola, a cubic and a quartic that pass through the origin.
\lim
$(x, y) \rightarrow(0,0)$

$$
\frac{12 x^{4} y}{x^{8}+y^{2}}
$$

2. a. Graph several of the level curves of the function below on the axes below.

$$
z=f(x, y)=y^{2}-x
$$

b. Now describe and graph the

3. Graph the domain of the function $\quad f(x, y)=\left\{\begin{array}{cc}\sqrt{x^{2}+y^{2}-9} & \text { for } 9 \leq x^{2}+y^{2} \\ 2 & \text { for } 4 \leq x^{2}+y^{2}<9\end{array}\right\}$
4. Determine whether $f(x, y)$ in problem 3 above is continuous over its entire domain and give the reason for your conclusion.
5. For the function $z=f(x, y)=e^{3 x} \cdot y^{5}+\sin (x)-\cosh (3 y)+5$
a. Give the partial derivative of z with respect to y.
b. Give $f_{x}(x, y)$
c. Give the second partial of z
d. Give $f_{x y}(x, y)$
5. Continued
e. Suppose that the x and y in the function f are given by

$$
x=5 t^{3}-2 \quad \text { and } \quad y=2 t^{4}+3 t
$$

Give the derivative of z with respect to $t u s i n g$ the chain rule. Do not substitute for x and y.
f. If $x=3 \cos (t)^{*} \ln (s)$ and $y=t^{4}+s^{3}$, give the partial of z with respect to t. Do not substitute for x and y.
6. Use implicit differentiation to find $\partial z / \partial x$ in the equation $x^{3} z+5 x y+3 y \sin (z)=2 z^{2}$.
7. For a surface $z=g(x, y)$, explain the distinction between Δz and $d z$. Give formulas for each and a geometric explanation.
8. Work this exercise about wave heights from Stewart: Section 14.3 \#4.
9. Work this exercise about a contour map from Stewart: Section 14.3 \#10.
10. For the function $z=f(x, y)=x^{3} y^{5}+2 x-7 y$
a. Give grad f at (x, y).
b. Give a vector normal to the surface at the point on the surface where $x=2$ and $y=1$.
c. Give the equation of the plane tangent to $z=f(x, y)$ at the point on the surface where $x=2$ and $\mathrm{y}=1$.
d. Give a vector (actually a vector function) which gives the normal to the level curve $7=x^{3} y^{5}+2 x-7 y$ at each (x, y) on the level curve.
e. Give the directional derivative $D_{\mathbf{u}}$ fin the direction $<12,-5>$ at the point where $\mathrm{x}=2$ and $\mathrm{y}=1$.
f. Give the direction (in the xy-plane) in which the surface (and thus the tangent plane to the surface) at $(2,1)$ is steepest.
g. Give the steepest slope of the tangent plane at $(2,1)$.
11. For the function $z=f(x, y)=12 x y+x^{3}-y^{2}$, locate all relative maxima, relative minima and saddle points. Use the discriminant test to support your conclusion.
12. For the function $f(x, y)=5+4 x-2 x^{2}+3 y-y^{2}$ defined on the triangular region D bounded by the lines $y=-x, y=x$ and $y=2$, find the absolute maximum and absolute minimum values and the points at which they occur. Make a table that lists all critical values inside D , on the boundary of D and the corners of D.
13. Use the method of Lagrange Multipliers to find the point on the plane $6 x+4 y-2 z=-58$ that is closest to the point $(2,-1,5)$. (Hint: Minimize the square of the distance from $(2,-1,5)$ to a typical point (x, y, z) on the plane.)

