Name \qquad

1. Sketch a sufficient number of vectors to show the following force fields.
a. $\quad F=\langle-x, y\rangle$
b. $\quad F=\langle-y, x\rangle$
2. Let $F=<x^{2}+y^{2},-2 x y>$ be a force field. Evaluate the line integral $\int_{C} F \cdot d r$ to find the work done in moving a particle from the point $(0,0)$ to $(2,12)$ by way of the following two paths.
a. Along the two line segments $(0,0)->(2,0)$ and $(2,0) \quad->(2,12)$
b. Along the curve $y=3 x^{2}$.

Conclude whether this line integral is independent of the path.
3. a. Use a test to determine whether the vector field
$F(x, y, z)=<2 x y \ln (z)+4 x^{3} \sin (z), \quad x^{2} \ln (z)+3 y^{2}, \quad x^{2} y / z+x^{4} \cos (z)>$ is a conservative vector field, and thus whether the line integral in part (b) is path independent.
b. If this line integral is path independent, find a potential function and evaluate the integral using the potential function. If it is not, use a straight line segment from beginning to end to evaluate it.
$\int_{(3,2,1)}^{(2,1,4)}\left(2 x y \ln (z)+4 x^{3} \sin (z)\right) d x+\left(\mathrm{x}^{2} \ln (\mathrm{z})+3 \mathrm{y}^{2}\right) d y+\left(\mathrm{x}^{2} \mathrm{y} / \mathrm{z}+\mathrm{x}^{4} \cos (\mathrm{z})\right) \mathrm{dz}$
C
4. Use Green's QP theorem to evaluate the circulation integral $\oint_{C} x^{2} y^{2} d x+\left(x^{2}-y^{2}\right) d y$ where C is the square with vertices $(0,0),(6,0),(6,6)$, and $(0,6)$.
5. Illustrate (verify) Green's QP theorem for $\int_{C} x y d x+(x+y) d y$ where C is the unit circle $x^{2}+y^{2}=1$. left side =
right side $=$
6. Set up the following flux integrals (surface integrals).
a. $\quad \mathbf{F}=\langle x, y, z\rangle \quad S$ is the upper half of the sphere $x^{2}+y^{2}+z^{2}=36$.
b. $\quad \mathbf{F}=\langle x, y, z\rangle \quad S$ is the first octant portion of the plane $z=-2 x-4 y+4$.
7. Use Gauss's divergence theorem to find the value of the flux of the vector field \mathbf{F} below through the closed surface S where $\quad F=<y \sin x, y^{2} z, x+3 z>\quad$ and the surface S is the cube bounded by $x= \pm 1, y= \pm 1, z= \pm 1$.
8. Illustrate (verify) Gauss's divergence theorem with the force function
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left\langle 2 x,-2 y, z^{2}\right\rangle$
where the surface S is the cylinder $x^{2}+y^{2}=64$
and the planes $z=0$ and $z=8$.
left side $=$
right side $=$
9. Illustrate (verify) Stoke's curl theorem with the force function $F(x, y, z)=<3 z, 4 x, 2 y>$ where the surface S is $z=9-x^{2}-y^{2}, \quad z \geq 0$.
left side =
right side $=$
10. Use the given transformation to evaluate the integral $\iint_{R}(x+y) d A$ where R is the square with vertices $(0,0),(2,3),(5,1)$ and $(3,-2)$. The transformation is $x=2 u+3 v, y=3 u-2 v$.

