Name \qquad

1. For the vectors $\mathbf{u}=(1,4,2)$ and $\mathbf{v}=(3,-2,0)$,
a. give $4 \mathbf{u}-5 \mathbf{v}$;
b. determine whether the vector $\mathbf{w}=(5,6,4)$ is a linear combination of \mathbf{u} and \mathbf{v}, and if so, write \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}.
c. repeat part (b) with the vector $\mathbf{x}=(1,2,3)$.
2. Complete the proof of the cancellation property of vector addition by supplying the justification for each step. Prove that if \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in a vector space V such that

$$
\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w} \text {, then } \mathbf{u}=\mathbf{v} \text {. }
$$

$$
\begin{array}{ll}
\mathbf{u}+\mathbf{w}=\mathbf{v}+\mathbf{w} & \text { Given } \\
\mathbf{u}+\mathbf{w}+(-\mathbf{w})=\mathbf{v}+\mathbf{w}+(-\mathbf{w}) \\
\mathbf{u}+(\mathbf{w}+(-\mathbf{w}))=\mathbf{v}+(\mathbf{w}+(-\mathbf{w})) \\
\mathbf{u}+\mathbf{0}=\mathbf{v}+\mathbf{0} \\
\mathbf{u}=\mathbf{v} &
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
2. State two theorems concerning what it takes for a subset of a vector space to be a subspace. Apply the theorems to determine whether the following subsets of vector spaces is a vector subspace.
a. the set of tenth degree polynomials is a vector subspace of the vector space of all polynomials under the usual operations. Give reasons for your decision.
b. the intersection of the two planes given by the two equations $x+y+z=0$ and $2 x+3 y+5 z=0$
c. the plane given by the equation $6 x-3 y+2 z=18$.
d. the set of 2-by-2 matrices with a zero in the left lower corner is a subspace of the vector space of all 2-by-2 matrices under the usual operations.
3. For the vectors $(1,2,3),(4,5,6)$ and $(7,8,9)$, do the following. Do work or give reasons to support your conclusion.
a. Determine whether these vectors are linearly independent or linearly dependent. If linearly dependent, find a linear combination that demonstrates that these vectors are linearly dependent.
b. Determine whether the vectors span $R^{3 .}$
c. Determine whether the vectors are a basis for R^{3}.
d. Give the dimension of the vector subspace spanned by the three vectors.
e. If the three vectors are not a basis, find a basis for the subspace spanned by the three vectors.
4. Consider the matrix $A=\left[\begin{array}{lllll}1 & 2 & 4 & 2 & 1 \\ 4 & 3 & 9 & 4 & 4 \\ 3 & 1 & 5 & 2 & 3 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$
a. Find a basis for the row space of A.
b. Find a basis for the column space of A two ways, with and without using the transpose.
c. Give a basis for the nullspace of A. (This is also called the solution space for $A \mathbf{x}=\mathbf{0}$.)
d. Give the rank of A, the nullity of A and the relationship between them and the number n of columns of A.
5. Consider the underlying vector space $V=R^{3}$ with the standard basis $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ Let $B=\{(1,2,3),(1,0,1)\}$ be a basis for a vector subspace W of $V=R^{3}$.
Let $D=\{(4,2,6),(7,4,11)\}$ be another basis for the vector subspace W of V.
Let $[\mathbf{x}]_{B}=(6,-2)$ or $\left[\begin{array}{c}6 \\ -2\end{array}\right]$ be the coordinate vector of \mathbf{x} relative to the basis B.
Show the work that supports your answer each of the following.
a. Find the transition matrix P^{-1} from B to D and the transition matrix P from D to B .
b. Show that the two transition matrices work using Bcol, Dcol, P and P^{-1}.
C. Tell what it means to say that $[\mathbf{x}]_{B}=(6,-2)$ is the coordinate vector of \mathbf{x} relative to the basis B.
d. Find $[\mathbf{x}]_{S}$, the coordinate vector of \mathbf{x} relative to the standard basis S .
e. Use P or P^{-1} as appropriate to find, $[\mathrm{x}]_{\mathrm{D}}$, the coordinate vector of \mathbf{x} relative to the basis D , from $[\mathbf{x}]_{B}=(6,-2)$.
6. Prove that $M_{2 \times 2}$ with the standard operations of addition and scalar multiplication satisfies the associative property of addition. Give reasons for every step. (Hint: The beginning of your proof should look like this.

$$
\begin{aligned}
& \text { Let } \mathrm{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \mathrm{B}=\ldots, \mathrm{C}=\ldots \\
& \begin{aligned}
\mathrm{A}+(\mathrm{B}+\mathrm{C}) & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+(\ldots \ldots \ldots) \\
& =\ldots \ldots \ldots .
\end{aligned}
\end{aligned}
$$

