Name \qquad

1. Consider the matrix $A=\left[\begin{array}{cc}3 & -4 \\ -2 & 1\end{array}\right]$
a. Find all real eigenvalues for the matrix A.
b. Find the eigenvectors of A corresponding to the eigenvalues.
2. (continued)
c. Give a basis for the eigenspace for one of the eigenvalues of A.
d. Demonstrate the Cayley-Hamilton theorem for the matrix A.
e. Find a matrix P (called the modal matrix in some texts) that demonstrates that A is diagonalizable.
f. Use matrix multiplication to find A's spectral matrix, the diagonal matrix to which A is diagonalizable.
3. Gjve a graphical description of eigenvalues and eigenvectors of a linear transformation in R^{2}.
4. Let A be a 3-by-3 symmetric matrix. Tell all you can about its eigenvalues, eigenvectors, diagonalizability and modal matrix P. (Hint: The Real Spectral Theorem and the Fundamental Theorem of symmetric matrices are a good place to start.)
5. For the symmetric matrix $A=\left[\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right]$,
a. find the eigenvalues and eigenvectors for A.
b. give the spectral matrix for A.
b. find an orthogonal modal matrix P for A.
c. show that $P^{\top}=P^{-1}$.
d. show that $P^{\top} A P$ is the spectral matrix for A.
6. Give the 4X4 matrix for the homogeneous (linear) transformation which translates a coordinate frame (or an object lying in the coordinate frame) by an amount $(2,3,4)$ from the base coordinate frame and then rotates the coordinate frame by 90° about the z axis of the base coordinate frame.
7. Tell what each of the columns of this homogeneous transformation matrix represents.
$\left|\begin{array}{rrrrr}1 & 0 & 0 & 4 \\ \mid & 0 & 0 & 1 & -2 \\ 0 & -1 & 0 & 5 & \\ 0 & 0 & 0 & 1\end{array}\right|$
8. Give the product of four (Rot and Trans) transformation matrices that describe a link in a robotic manipulator arm. Tell what each variable or parameter represents as it relates to a link. (Do not multiply them together to form one matrix.)
9. For the particular revolute link on display in the front of the room, give the product of the four rotation/translation matrices for the A matrix of the link. Just use the names Rot and Trans with the correct variable and estimated values of the parameters to describe the links.
