17. INTERPARTICLE FORCES (Ch. 11 and 12)

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Questions

Identify the major interparticle forces present in the following:

1.	PBr ₃	6.	NH ₃	11.	Cu
2.	Са	7.	SiO ₂	12.	K_3PO_4
3.	Ne	8.	Cl ₂	13.	SO ₃
4.	CH_2F_2	9.	Pb(NO ₃) ₂	14.	OF ₂
5.	CaCl ₂	10.	HF	15.	MgO

Which member of each pair of solids should have the higher melting point? Briefly explain why.

16.	PF ₃ or AlF ₃	20.	Na or Al	23.	PCl_3 or SCl_2
17.	H_2S or I_2	21.	SiO ₂ or PbO ₂	24.	H_2O or H_2S
18.	SO ₂ or SiO ₂	22.	MgSO ₄ or K ₂ SO ₄	25.	CaO or KNO ₃

19. NaBr or NaCl

Which member of each pair should be more volatile at a given temperature? Briefly explain why.

26.	I ₂ or NaI	29.	CCl ₄ or Cl ₄	32.	NaCl or KBr
27.	MgS or KBr	30.	H ₂ O or KCl	33.	PF_3 or AlF_3
28.	PbO ₂ or SiO ₂	31.	C_8H_{18} or $C_8H_{17}OH$		

Answers

If you cannot figure out how to get the correct answer, go to your instructor, the Science Tutoring Center, SI, etc.

1.	London dispersion and dipole-dipole forces	9.	ionic bonds
2.	metallic bonds	10.	hydrogen bonds
3.	London dispersion forces	11.	metallic bonds
4.	London dispersion and dipole-dipole forces	12.	ionic bonds
5.	ionic bonds	13.	London dispersion forces
6.	hydrogen bonds	14.	London dispersion and dipole-dipole forces
7.	covalent bonds	15.	ionic bonds
8.	London dispersion forces		

The stronger the interparticle forces, the more energy will be needed to separate the particles, so the HIGHER the melting point.

 20. Al both are metallic, metallic bonds are stronger for higher cation charges (Al³⁺ vs Na¹⁺) 21. SiO₂ covalent bonds are generally stronger than ionic bonds 22. MgSO₄ both are ionic, ionic bonds are stronger for higher ionic charges (Mg²⁺ vs K¹⁺) 	16.	AlF ₃	ionic bonds are stronger than dipole-dipole forces or London dispersion forces
 19. NaCl both are ionic with same ionic charges, ionic bonds are stronger for smaller ions (Cl¹⁻ vs Br¹⁻) 20. Al both are metallic, metallic bonds are stronger for higher cation charges (Al³⁺ vs Na¹⁺) 21. SiO₂ covalent bonds are generally stronger than ionic bonds 22. MgSO₄ both are ionic, ionic bonds are stronger for higher ionic charges (Mg²⁺ vs K¹⁺) 23. PCl₃ dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules 	17.	I ₂	both are nonpolar molecules, London dispersion forces are stronger for larger molecules
 20. Al both are metallic, metallic bonds are stronger for higher cation charges (Al³⁺ vs Na¹⁺) 21. SiO₂ covalent bonds are generally stronger than ionic bonds 22. MgSO₄ both are ionic, ionic bonds are stronger for higher ionic charges (Mg²⁺ vs K¹⁺) 23. PCl₃ dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules 	18.	SiO ₂	covalent bonds are stronger than dipole-dipole forces or London dispersion forces
 21. SiO₂ covalent bonds are generally stronger than ionic bonds 22. MgSO₄ both are ionic, ionic bonds are stronger for higher ionic charges (Mg²⁺ vs K¹⁺) 23. PCl₃ dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules 	19.	NaCl	both are ionic with same ionic charges, ionic bonds are stronger for smaller ions (Cl $^{1-}$ vs Br $^{1-}$)
 22. MgSO₄ both are ionic, ionic bonds are stronger for higher ionic charges (Mg²⁺ vs K¹⁺) 23. PCl₃ dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules 	20.	Al	both are metallic, metallic bonds are stronger for higher cation charges (Al ³⁺ vs Na ¹⁺)
23. PCl ₃ dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules	21.	SiO ₂	covalent bonds are generally stronger than ionic bonds
bonds, and London dispersion forces are stronger for larger molecules	22.	MgSO ₄	both are ionic, ionic bonds are stronger for higher ionic charges (Mg $^{2+}$ vs K $^{1+}$)
24. H_2O hydrogen bonds are stronger than London dispersion forces	23.	PCl ₃	dipole-dipole forces are stronger for higher electronegativity differences between atoms in the bonds, and London dispersion forces are stronger for larger molecules
	24.	H_2O	hydrogen bonds are stronger than London dispersion forces

25. Ca0 both are ionic, ionic bonds are stronger for higher ion charges (Ca²⁺ and O²⁻ vs K¹⁺ and NO₃¹⁻)

The WEAKER the interparticle forces, the less energy will be required for the particles to escape into the vapor phase, so the HIGHER the volatility.

26.	I ₂	London dispersion forces are weaker than ionic bonds
27.	KBr	both are ionic, ionic bonds are weaker for smaller ionic charges (K $^{1+}$ and Br $^{1-}$ vs Mg $^{2+}$ and S $^{2-}$)
28.	PbO ₂	ionic bonds are weaker than covalent bonds
29.	CCl_4	both are nonpolar molecules, London dispersion forces are weaker for smaller molecules
30.	H_2O	hydrogen bonds are weaker than ionic bonds
31.	C_8H_{18}	London dispersion forces are weaker for smaller molecules, plus $C_8H_{17}OH$ is a little bit polar
32.	KBr	both are ionic, same ion charges, ionic bonds weaker for larger ions (K^{1+} vs Na^{1+} and Br^{1-} vs Cl^{1-})

33. PF₃ dipole-dipole forces and London dispersion forces are both weaker than ionic bonds

Some Actual Melting Points (°C)								
PF ₃	-152	$C_8H_{17}OH$	-17	Al	660	K_2SO_4	1069	
PCl ₃	-112	H ₂ 0	0	NaI	661	MgSO ₄	1124*	
H ₂ S	-86	Na	98	KBr	734	AlF ₃	1291	*decomposes
SCl ₂	-78	I ₂	114	NaBr	747	SiO ₂	1723	
SO ₂	-73	CI ₄	171*	KCl	770	MgS	2000*	
C ₈ H ₁₈	-57	PbO ₂	290*	NaCl	801	CaO	2614	
CCl ₄	-23	KNO ₃	334					

data from CRC Handbook of Chemistry and Physics, 74th ed.