2. CHEMICAL EQUILIBRIUM

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Questions

1. $\operatorname{CO}(g) + \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{COCl}_2(g)$

Equilibrium is established at 100.0 °C with these equilibrium values: $[CO]_E = 0.0145 \text{ M}$, $[Cl_2]_E = 0.0546 \text{ M}$, $[COCl_2]_E = 3.62 \times 10^{-6} \text{ M}$. Determine K_c and K_p .

2. $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

Equilibrium is established at 448 °C with $[H_2]_E = 6.5 \times 10^{-5}$ M, $[I_2]_E = 1.063 \times 10^{-3}$ M, $[HI]_E = 1.87 \times 10^{-3}$ M, Determine K_c and K_p.

3. $2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$

Equilibrium is established at 1000 K with equilibrium pressures of P_{S03} = 0.20 atm, P_{S02} = 0.30 atm, P_{02} = 0.15 atm. Determine K_c and K_p.

4. $\operatorname{CaF}_2(s) \rightleftharpoons \operatorname{Ca}^{2+}(aq) + 2 \operatorname{F}^{-}(aq)$

At equilibrium, $[Ca^{2+}]_E = 0.010$ M, $[F^-]_E = 6.2 \times 10^{-5}$ M. Determine K_c.

The following questions refer to this reaction, for which $K_p = 1.25 \times 10^{-5}$ at 22.00 °C:

$$I_2(s) + H_2S(g) \rightleftharpoons 2 HI(g) + S(s)$$

- 5. What is the value of K_c for the same reaction at 22.00 °C?
- 6. At 22.00 °C, does equilibrium favor I_2 and H_2S or HI and S?
- 7. What is the value of K_p at 22.00 °C for this reaction: 2 HI(g) + S(s) \Rightarrow I₂(s) + H₂S(g)
- 8. What is the value of K_p at 22.00 °C for this reaction: $3 I_2(s) + 3 H_2S(g) \rightleftharpoons 6 HI(g) + 3 S(s)$
- 9. What is the value of K_p at 22.00 °C for this reaction: $HI(g) + \frac{1}{2}S(s) \rightleftharpoons \frac{1}{2}I_2(s) + \frac{1}{2}H_2S(g)$

Evaluate the equilibrium constant, K_c for the following:

10. A mixture of 0.150 mol NO, 0.100 mol H₂ and 0.120 mol H₂O is placed in a 1.00 liter vessel. The following equilibrium is established, with $[NO]_E = 0.070$ M:

$$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightleftharpoons \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$$

11. A mixture of 1.374 g H_2 and 70.31 g Br_2 is heated in a 2.000 liter vessel. The following equilibrium is established, with 0.5660 g H₂ present at equilibrium:

$$H_2(g) + Br_2(g) \rightleftharpoons 2 HBr(g)$$

12. Some ammonia and oxygen are combined in a sealed vessel, both at a concentration of 0.0150 M. The following equilibrium is established, with the concentration of nitrogen gas 0.00196 M at equilibrium:

$$4 \operatorname{NH}_3(g) + 3 \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{N}_2(g) + 6 \operatorname{H}_2\operatorname{O}(g)$$

13. When 2.00 mol of SO₂Cl₂ is placed in a 2.00 liter flask at 303 K, 56% of the SO₂Cl₂ decomposes to SO₂ and Cl₂:

 $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$

14. Pure ammonia, at 0.186 M is placed into a sealed vessel. When the system reaches equilibrium, it is found that 61.2% of the ammonia has decomposed to nitrogen and hydrogen. Find K_c for this reaction:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

Answer the following questions:

- 15. At 100 °C, $K_c = 0.078$ for the following reaction: $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ In an equilibrium mixture of the three gases, $[SO_2Cl_2]_E = 0.136$ M and $[SO_2]_E = 0.072$ M. What is the equilibrium concentration of chlorine?
- 16. At 1285 °C, $K_c = 0.00104$ for the following reaction: $Br_2(g) \rightleftharpoons 2 Br(g)$

A 2.00 liter vessel containing an equilibrium mixture of gases has 24.5 g Br_2 in it. What is the mass of Br in the vessel at equilibrium?

17. At 22 °C, $K_p = 0.070$ for the following reaction: $NH_4SH(s) \rightleftharpoons NH_3(g) + H_2S(g)$

If 2.00 g NH₄SH is placed into a 3.00 liter vessel at 22 °C, and decomposes, then what are the equilibrium partial pressures of NH₃ and H₂S?

18. At 400 K, $K_c = 7.0$ for the following reaction: $Br_2(g) + Cl_2(g) \rightleftharpoons 2 BrCl(g)$

If 0.050 mol Br_2 and 0.075 mol Cl_2 are introduced into a 1.50 liter vessel at 400 K, what is the equilibrium concentration of BrCl?

19. At 25 °C, $K_c = 4.4 \times 10^{-4}$ for the following reaction:

 $CH_3NH_2(aq) + H_2O(l) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$

If initially $[CH_3NH_2] = 0.075 \text{ M}$ and $[CH_3NH_3^+] = 0.010 \text{ M}$, then what are equilibrium concentrations of all species?

20. At 25 °C, $K_c = 6.8 \times 10^{-4}$ for the following reaction: HF (*aq*) \rightleftharpoons H⁺ (*aq*) + F⁻ (*aq*)

Initially 2.00 L of a solution contains both HF and F^- . If the initial concentration of HF is 0.150 M, and the equilibrium concentration of H⁺ is 6.5×10^{-4} M, then how many moles of fluoride ions must initially be present in the solution?

21. At 25 °C, $K_c = 1.8 \times 10^{-5}$ for the following reaction:

 $\mathrm{NH}_{3}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(aq) + \mathrm{OH}^{-}(aq)$

How many grams of NH_4Cl must be added to 4.00 liters of a 0.200 M NH_3 solution for the mixture to have an equilibrium hydroxide concentration, $[OH^-]_E = 2.0 \times 10^{-5}$ M?

22. At 400 K, $K_c = 0.914$ for the following reaction: $NO_2(g) + NO(g) \rightleftharpoons N_2O(g) + O_2(g)$ Equal amounts of NO_2 and NO are to be placed in a 5.00 liter vessel, and when the system reaches equilibrium, $[N_2O]_E = 0.050$ M. How many moles of NO_2 and NO must be placed in the vessel initially?

Predict which direction each reaction will proceed in order to achieve equilibrium.

- 23. $K_c = 0.00122$ for this reaction: $2 \operatorname{Cl}_2(g) + 2 \operatorname{H}_2 \operatorname{O}(g) \rightleftharpoons 4 \operatorname{HCl}(g) + \operatorname{O}_2(g)$ $[\operatorname{Cl}_2] = 0.125 \text{ M}, [\operatorname{H}_2 \operatorname{O}] = 0.750 \text{ M}, [\operatorname{HCl}] = 0.033 \text{ M}, [\operatorname{O}_2] = 0.468 \text{ M}$
- 24. $K_p = 0.497$ for this reaction: $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $P_{PCl5} = 0.970$ atm, $P_{PCl3} = 0.693$ atm, $P_{Cl2} = 0.821$ atm
- 25. $K_p = 9.45 \times 10^{-5}$ for this reaction: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ $P_{N2} = 175$ torr, $P_{H2} = 224$ torr, $P_{NH3} = 398$ torr
- 26. $K_c = 6.2 \times 10^{-8}$ for this reaction: $H_2PO_4^-(aq) + H_2O(l) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq)$ $[H_2PO_4^-] = 1.40 \text{ M}, [HPO_4^{2-}] = 0.067 \text{ M}, [H_3O^+] = 1.3 \times 10^{-6} \text{ M}$
- 27. $K_c = 5 \times 10^3$ for this reaction: $Cd^{2+}(aq) + 4 Br^-(aq) \rightleftharpoons CdBr_4^{2-}(aq)$ $[Cd^{2+}] = 0.100 M, [Br^-] = 0.225 M, [CdBr_4^{2-}] = 0.750 M$
- 28. $K_c = 4 \times 10^{-38}$ for this reaction: $Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3 OH^-(aq)$ [FeCl₃] = 0.0200 M, [Ba(OH)₂] = 0.00500 M, 0.500 g Fe(OH)₃

Predict the effect of decreasing the volume of the container at constant temperature on the equilibrium yield of product for the following reactions:

- 29. $2 \operatorname{SO}_3(g) + 2 \operatorname{Cl}_2(g) \rightleftharpoons 2 \operatorname{SO}_2 \operatorname{Cl}_2(g) + \operatorname{O}_2(g)$
- $30. \qquad O_2(g) + 2 F_2(g) \rightleftharpoons 2 OF_2(g)$
- 31. $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{NO}_2(g)$
- 32. $4 \operatorname{NH}_3(g) + 5 \operatorname{O}_2(g) \rightleftharpoons 4 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(g)$
- 33. $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$

Predict the effect of decreasing the temperature on the equilibrium yield of product for the following reactions:

34. 2 O₃(g) \rightleftharpoons 3 O₂(g) △H° = -285.4 kJ 35. C(s) + 2 H₂(g) \rightleftharpoons CH₄(g) △H° = -74.85 kJ

36. $\operatorname{NH}_4\operatorname{Cl}(s) \rightleftharpoons \operatorname{NH}_4^+(aq) + \operatorname{Cl}^-(aq) \quad \Delta \mathrm{H}^\circ = +14.7 \text{ kJ}$

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1.	$K_c = 0.00457$ and $K_p = 1.49 \times 10^{-4}$	19.	$[CH_3NH_2]_E = 0.072 \text{ M}, [CH_3NH_3^+]_E = 0.013 \text{ M}, [OH^-]_E = 0.0026 \text{ M}$
2.	$K_{c} = 51 \text{ and } K_{p} = 51$	20.	0.32 mol F⁻
3.	$K_{c} = 0.0041$ and $K_{p} = 0.34$	21.	39 g NH ₄ Cl
4.	3.8×10 ⁻¹¹	22.	0.510 mol of each
5.	5.16×10 ⁻⁷	23.	$Q_c = 6.3 \times 10^{-5} < K_c \implies RIGHT$
6.	I_2 and H_2S	24.	$Q_p = 0.587 > K_p \implies LEFT$
7.	8.00×10^4	25.	$Q_p = 46.5 > K_p \implies LEFT$
8.	1.95×10 ⁻¹⁵	26.	$Q_c = 6.2 \times 10^{-8} = K_c \implies AT EQUILIBRIUM ALREADY$
9.	283	27.	$Q_c = 2.93 \times 10^3 < K_c \implies RIGHT$
10.	$K_{c} = 8.2 \times 10^{2}$	28.	$Q_c = 2.00 \times 10^{-8} > K_c \implies LEFT$
11.	K _c = 58.4	29.	increase
12.	$K_c = 5.90 \times 10^{-6}$	30.	increase
13.	0.71	31.	increase
14.	18.3	32.	decrease
15.	0.15 M Cl ₂	33.	decrease
16.	1.43 g Br	34.	increase
17.	$P_{\rm NH3} = P_{\rm H2S} = 0.26$ atm	35.	increase
18.	0.046 M BrCl	36.	decrease