These problems are intended to supplement the problems in the textbook, not replace them.

Questions

1. $\quad \mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{COCl}_{2}(g)$

Equilibrium is established at $100.0^{\circ} \mathrm{C}$ with these equilibrium values: $[\mathrm{CO}]_{\mathrm{E}}=0.0145 \mathrm{M},\left[\mathrm{Cl}_{2}\right]_{\mathrm{E}}=0.0546 \mathrm{M}$, $\left[\mathrm{COCl}_{2}\right]_{\mathrm{E}}=3.62 \times 10^{-6} \mathrm{M}$. Determine K_{c} and K_{p}.
2. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$

Equilibrium is established at $448{ }^{\circ} \mathrm{C}$ with $\left[\mathrm{H}_{2}\right]_{\mathrm{E}}=6.5 \times 10^{-5} \mathrm{M},\left[\mathrm{I}_{2}\right]_{\mathrm{E}}=1.063 \times 10^{-3} \mathrm{M},[\mathrm{HI}]_{\mathrm{E}}=1.87 \times 10^{-3} \mathrm{M}$, Determine K_{c} and K_{p}.
3. $\quad 2 \mathrm{SO}_{3}(g) \rightleftarrows 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$

Equilibrium is established at 1000 K with equilibrium pressures of $\mathrm{P}_{\mathrm{SO} 3}=0.20 \mathrm{~atm}, \mathrm{P}_{\mathrm{SO} 2}=0.30 \mathrm{~atm}$, $\mathrm{P}_{\mathrm{O} 2}=0.15 \mathrm{~atm}$. Determine K_{c} and K_{p}.
4. $\quad \mathrm{CaF}_{2}(s) \rightleftarrows \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$

At equilibrium, $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{E}}=0.010 \mathrm{M},\left[\mathrm{F}^{-}\right]_{\mathrm{E}}=6.2 \times 10^{-5} \mathrm{M}$. Determine K_{c}.

The following questions refer to this reaction, for which $\mathrm{K}_{\mathrm{p}}=1.25 \times 10^{-5}$ at $22.00{ }^{\circ} \mathrm{C}$:

$$
\mathrm{I}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(g) \quad \rightleftarrows 2 \mathrm{HI}(g)+\mathrm{S}(s)
$$

5. What is the value of K_{c} for the same reaction at $22.00^{\circ} \mathrm{C}$?
6. At $22.00^{\circ} \mathrm{C}$, does equilibrium favor I_{2} and $\mathrm{H}_{2} \mathrm{~S}$ or HI and S ?
7. What is the value of K_{p} at $22.00^{\circ} \mathrm{C}$ for this reaction: $2 \mathrm{HI}(g)+\mathrm{S}(s) \rightleftarrows \mathrm{I}_{2}(s)+\mathrm{H}_{2} \mathrm{~S}(g)$
8. What is the value of K_{p} at $22.00^{\circ} \mathrm{C}$ for this reaction: $3 \mathrm{I}_{2}(s)+3 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftarrows 6 \mathrm{HI}(g)+3 \mathrm{~S}(s)$
9. What is the value of K_{p} at $22.00^{\circ} \mathrm{C}$ for this reaction: $\mathrm{HI}(g)+1 / 2 \mathrm{~S}(s) \rightleftarrows 1 / 2 \mathrm{I}_{2}(s)+1 / 2 \mathrm{H}_{2} \mathrm{~S}(g)$

Evaluate the equilibrium constant, K_{c} for the following:

10. A mixture of $0.150 \mathrm{~mol} \mathrm{NO}, 0.100 \mathrm{~mol} \mathrm{H}_{2}$ and $0.120 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ is placed in a 1.00 liter vessel. The following equilibrium is established, with $[\mathrm{NO}]_{\mathrm{E}}=0.070 \mathrm{M}$:

$$
2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

11. A mixture of $1.374 \mathrm{~g} \mathrm{H}_{2}$ and $70.31 \mathrm{~g} \mathrm{Br}_{2}$ is heated in a 2.000 liter vessel. The following equilibrium is established, with $0.5660 \mathrm{~g} \mathrm{H}_{2}$ present at equilibrium:

$$
\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightleftarrows 2 \mathrm{HBr}(g)
$$

12. Some ammonia and oxygen are combined in a sealed vessel, both at a concentration of 0.0150 M . The following equilibrium is established, with the concentration of nitrogen gas 0.00196 M at equilibrium:

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

13. When 2.00 mol of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is placed in a 2.00 liter flask at $303 \mathrm{~K}, 56 \%$ of the $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ decomposes to SO_{2} and Cl_{2} :

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)
$$

14. Pure ammonia, at 0.186 M is placed into a sealed vessel. When the system reaches equilibrium, it is found that 61.2% of the ammonia has decomposed to nitrogen and hydrogen. Find K_{c} for this reaction:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)
$$

Answer the following questions:

15. At $100{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=0.078$ for the following reaction: $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

In an equilibrium mixture of the three gases, $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]_{\mathrm{E}}=0.136 \mathrm{M}$ and $\left[\mathrm{SO}_{2}\right]_{\mathrm{E}}=0.072 \mathrm{M}$. What is the equilibrium concentration of chlorine?
16. At $1285{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=0.00104$ for the following reaction: $\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{Br}(\mathrm{g})$

A 2.00 liter vessel containing an equilibrium mixture of gases has $24.5 \mathrm{~g} \mathrm{Br}_{2}$ in it. What is the mass of Br in the vessel at equilibrium?
17. At $22^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}=0.070$ for the following reaction: $\mathrm{NH}_{4} \mathrm{SH}(\mathrm{s}) \rightleftarrows \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g)$

If $2.00 \mathrm{~g} \mathrm{NH}_{4} \mathrm{SH}$ is placed into a 3.00 liter vessel at $22^{\circ} \mathrm{C}$, and decomposes, then what are the equilibrium partial pressures of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$?
18. At $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{c}}=7.0$ for the following reaction: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{BrCl}(\mathrm{g})$

If $0.050 \mathrm{~mol} \mathrm{Br}_{2}$ and $0.075 \mathrm{~mol} \mathrm{Cl}_{2}$ are introduced into a 1.50 liter vessel at 400 K , what is the equilibrium concentration of BrCl ?
19. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=4.4 \times 10^{-4}$ for the following reaction:

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

If initially $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=0.075 \mathrm{M}$ and $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]=0.010 \mathrm{M}$, then what are equilibrium concentrations of all species?
20. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=6.8 \times 10^{-4}$ for the following reaction: $\mathrm{HF}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)$

Initially 2.00 L of a solution contains both HF and F^{-}. If the initial concentration of HF is 0.150 M , and the equilibrium concentration of H^{+}is $6.5 \times 10^{-4} \mathrm{M}$, then how many moles of fluoride ions must initially be present in the solution?
21. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=1.8 \times 10^{-5}$ for the following reaction:

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \quad \rightleftarrows \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

How many grams of $\mathrm{NH}_{4} \mathrm{Cl}$ must be added to 4.00 liters of a $0.200 \mathrm{M} \mathrm{NH}_{3}$ solution for the mixture to have an equilibrium hydroxide concentration, $\left[\mathrm{OH}^{-}\right]_{\mathrm{E}}=2.0 \times 10^{-5} \mathrm{M}$?
22. At $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{c}}=0.914$ for the following reaction: $\mathrm{NO}_{2}(g)+\mathrm{NO}(g) \rightleftarrows \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g)$

Equal amounts of NO_{2} and NO are to be placed in a 5.00 liter vessel, and when the system reaches equilibrium, $\left[\mathrm{N}_{2} \mathrm{O}\right]_{\mathrm{E}}=0.050 \mathrm{M}$. How many moles of NO_{2} and NO must be placed in the vessel initially?

Predict which direction each reaction will proceed in order to achieve equilibrium.
23. $\quad \mathrm{K}_{\mathrm{c}}=0.00122$ for this reaction: $2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\left[\mathrm{Cl}_{2}\right]=0.125 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.750 \mathrm{M},[\mathrm{HCl}]=0.033 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.468 \mathrm{M}$
24. $\quad \mathrm{K}_{\mathrm{p}}=0.497$ for this reaction: $\mathrm{PCl}_{5}(g) \rightleftarrows \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
$\mathrm{P}_{\mathrm{PC} 15}=0.970 \mathrm{~atm}, \mathrm{P}_{\mathrm{PC} 13}=0.693 \mathrm{~atm}, \mathrm{P}_{\mathrm{C} 12}=0.821 \mathrm{~atm}$
25. $\quad \mathrm{K}_{\mathrm{p}}=9.45 \times 10^{-5}$ for this reaction: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
$\mathrm{P}_{\mathrm{N} 2}=175$ torr, $\mathrm{P}_{\mathrm{H} 2}=224$ torr, $\mathrm{P}_{\mathrm{NH} 3}=398$ torr
26. $\quad \mathrm{K}_{\mathrm{c}}=6.2 \times 10^{-8}$ for this reaction: $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=1.40 \mathrm{M},\left[\mathrm{HPO}_{4}{ }^{2-}\right]=0.067 \mathrm{M},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.3 \times 10^{-6} \mathrm{M}$
27. $\mathrm{K}_{\mathrm{c}}=5 \times 10^{3}$ for this reaction: $\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftarrows \mathrm{CdBr}_{4}{ }^{2-}(a q)$
$\left[\mathrm{Cd}^{2+}\right]=0.100 \mathrm{M},\left[\mathrm{Br}^{-}\right]=0.225 \mathrm{M},\left[\mathrm{CdBr}_{4}{ }^{2-}\right]=0.750 \mathrm{M}$
28. $\quad \mathrm{K}_{\mathrm{c}}=4 \times 10^{-38}$ for this reaction: $\mathrm{Fe}(\mathrm{OH})_{3}(s) \rightleftarrows \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$
$\left[\mathrm{FeCl}_{3}\right]=0.0200 \mathrm{M},\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.00500 \mathrm{M}, 0.500 \mathrm{~g} \mathrm{Fe}(\mathrm{OH})_{3}$

Predict the effect of decreasing the volume of the container at constant temperature on the equilibrium yield of product for the following reactions:
29. $2 \mathrm{SO}_{3}(g)+2 \mathrm{Cl}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{2} \mathrm{Cl}_{2}(g)+\mathrm{O}_{2}(g)$
30. $\quad \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{OF}_{2}(\mathrm{~g})$
31. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)$
32. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightleftarrows 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
33. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$

Predict the effect of decreasing the temperature on the equilibrium yield of product for the following reactions:
34. $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftarrows 3 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-285.4 \mathrm{~kJ}$
35. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{CH}_{4}(g) \quad \Delta \mathrm{H}^{\circ}=-74.85 \mathrm{~kJ}$
36. $\quad \mathrm{NH}_{4} \mathrm{Cl}(s) \rightleftarrows \mathrm{NH}_{4}^{+}(a q)+\mathrm{Cl}^{-}(a q) \quad \Delta \mathrm{H}^{\circ}=+14.7 \mathrm{~kJ}$

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1. $\mathrm{K}_{\mathrm{c}}=0.00457$ and $\mathrm{K}_{\mathrm{p}}=1.49 \times 10^{-4}$
2. $\mathrm{K}_{\mathrm{c}}=51$ and $\mathrm{K}_{\mathrm{p}}=51$
3. $\mathrm{K}_{\mathrm{c}}=0.0041$ and $\mathrm{K}_{\mathrm{p}}=0.34$
4. 3.8×10^{-11}
5. 5.16×10^{-7}
6. I_{2} and $\mathrm{H}_{2} \mathrm{~S}$
7. 8.00×10^{4}
8. 1.95×10^{-15}
9. 283
10. $\mathrm{K}_{\mathrm{c}}=8.2 \times 10^{2}$
11. $\mathrm{K}_{\mathrm{c}}=58.4$
12. $\mathrm{K}_{\mathrm{c}}=5.90 \times 10^{-6}$
13. 0.71
14. 18.3
15. $\quad 0.15 \mathrm{M} \mathrm{Cl}_{2}$
16. 1.43 g Br
17. $\mathrm{P}_{\mathrm{NH} 3}=\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}=0.26 \mathrm{~atm}$
18. $\quad 0.046 \mathrm{M} \mathrm{BrCl}$
19. $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]_{\mathrm{E}}=0.072 \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]_{\mathrm{E}}=0.013 \mathrm{M},\left[\mathrm{OH}^{-}\right]_{\mathrm{E}}=0.0026 \mathrm{M}$
20. $\quad 0.32 \mathrm{~mol} \mathrm{~F}^{-}$
21. $39 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$
22. 0.510 mol of each
23. $\mathrm{Q}_{\mathrm{c}}=6.3 \times 10^{-5}<\mathrm{K}_{\mathrm{c}} \Rightarrow$ RIGHT
24. $\mathrm{Q}_{\mathrm{p}}=0.587>\mathrm{K}_{\mathrm{p}} \Rightarrow$ LEFT
25. $\mathrm{Q}_{\mathrm{p}}=46.5>\mathrm{K}_{\mathrm{p}} \Rightarrow$ LEFT
26. $\mathrm{Q}_{\mathrm{c}}=6.2 \times 10^{-8}=\mathrm{K}_{\mathrm{c}} \Rightarrow$ AT EQUILIBRIUM ALREADY
27. $\mathrm{Q}_{\mathrm{c}}=2.93 \times 10^{3}<\mathrm{K}_{\mathrm{c}} \Rightarrow$ RIGHT
28. $\mathrm{Q}_{\mathrm{c}}=2.00 \times 10^{-8}>\mathrm{K}_{\mathrm{c}} \Rightarrow$ LEFT
29. increase
30. increase
31. increase
32. decrease
33. decrease
34. increase
35. increase
36. decrease
