4. ACIDS AND BASES II – pH, pOH, Dissociation Constants, Conjugate Acids and Bases

CHE 112 Q & A

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Data:

Acids					
Name	Formula	K_{a1}	K_{a2}	K_{a3}	
acetic acid	$HC_2H_3O_2$	1.8×10 ⁻⁵	X	X	
ascorbic acid	$H_2C_6H_6O_6$	8.0×10 ⁻⁵	1.6×10 ⁻¹²	Х	
benzoic acid	$HC_7H_5O_2$	6.3×10 ⁻⁵	X	Х	
carbonic acid	H_2CO_3	4.3×10 ⁻⁷	5.6×10 ⁻¹¹	X	
citric acid	$H_3C_6H_5O_7$	7.4×10 ⁻⁴	1.7×10 ⁻⁵	4.0×10 ⁻⁷	
cyanic acid	HCNO	3.5×10 ⁻⁴	X	Х	
hydrocyanic acid	HCN	4.9×10 ⁻¹⁰	X	Х	
hydrofluoric acid	HF	6.8×10 ⁻⁴	X	Х	
hypochlorous acid	HClO	3.0×10 ⁻⁸	X	Х	
hypobromous acid	HBrO	2.5×10 ⁻⁹	X	Х	
hypoiodous acid	HIO	2.3×10 ⁻¹¹	X	Х	
lactic acid	HC ₃ H ₅ O ₃	1.4×10 ⁻⁴	X	Х	
oxalic acid	$H_2C_2O_4$	5.9×10 ⁻²	6.4×10 ⁻⁵	Х	
phosphoric acid	H ₃ PO ₄	7.5×10 ⁻³	6.2×10 ⁻⁸	4.2×10 ⁻¹³	
sulfurous acid	H ₂ SO ₃	1.7×10 ⁻²	6.4×10 ⁻⁸	Х	

Bases				
Name	Formula	K_b		
ammonia	NH_3	1.8×10 ⁻⁵		
aniline	C ₆ H ₅ NH ₂	4.3×10 ⁻¹⁰		
butylamine	C ₄ H ₉ NH ₂	5.9×10 ⁻⁴		
dimethylamine	(CH ₃) ₂ NH	5.4×10 ⁻⁴		
ethylamine	C ₂ H ₅ NH ₂	6.4×10 ⁻⁴		
hydroxylamine	NH ₂ OH	1.1×10 ⁻⁸		
methylamine	CH ₃ NH ₂	4.4×10 ⁻⁴		
pyridine	C ₅ H ₅ N	1.7×10 ⁻⁹		
trimethylamine	$(CH_3)_3N$	6.4×10 ⁻⁵		

Ouestions

- 1. What is the pH of a 0.0459 M HBr solution?
- 2. What is the pH of a solution with a pOH of 9.67?
- 3. What is the pH of a $0.024 \text{ M Ba}(OH)_2$ solution?
- 4. What concentration of HCl gives a pH of 1.23?
- 5. How many grams of HNO_3 do you need in 500.0 mL of solution to make the pH = 2.57?
- 6. What concentration of NaOH gives a pH of 10.92?
- 7. What concentration of $Sr(OH)_2$ gives a pOH of 4.32?
- 8. What concentration of $HClO_4$ gives a pOH of 12.34?
- 9. How many grams of KOH are needed to give a pH of 11.98 in 4.00 L of solution?

Brown, LeMay, et al, 13th

Write the formula and give the name for the conjugate acid of each of these bases.

- 10. methylamine, CH₃NH₂
- 13. fluoride, F

16. trimethylamine, (CH₃)₃N

- 11. butylamine, C₄H₉NH₂
- 14. hydroxide, OH-
- 17. water, H_2O

- 12. carbonate, CO_3^{2-}
- 15. hydrogen phosphate, HPO₄²⁻

Write the formula and give the name for the conjugate base of each of these acids.

- 18. cyanic acid, HCNO
- 21. hydronium, H₃O⁺
- 24. water, H₂O

- 19. arsenic acid, H₃AsO₄
- 22. hydrogen phosphate, HPO₄²⁻
- 20. ethylammonium, C₂H₅NH₃⁺
- 23. benzoic acid, HC₇H₅O₂
- 25. dimethylammonium, (CH₃)₂NH₂⁺

Refer to the Data given on the first page to determine the indicated dissociation constant for each of the following at 25 $^{\circ}$ C.

- 26. K_a for $H_2C_6H_5O_7^-$
- 29. K_b for CNO

32. K_a for C₅H₅NH⁺

- 27. K_b for $H_2C_6H_5O_7^-$
- 30. K_a for HSO_3^-

33. K_h for CO_3^{2-}

- 28. K_a for $C_6H_5NH_3^+$
- 31. K_b for $C_2O_4^{2-}$

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1. 1.338

- 12. HCO₃⁻, hydrogen carbonate
- 23. $C_7H_5O_2^-$, benzoate

2. 4.33

- 13. HF, hydrofluoric acid
- 24. OH⁻, hydroxide

3. 12.68

14. H₂O, water

25. $(CH_3)_2NH$, dimethylamine

4. 0.059 M HCl

- 15. $H_2PO_4^-$, dihydrogen phosphate
- 26. 1.7×10⁻⁵

5. 0.085 g HNO_3

- 16. (CH₃)₃NH⁺, trimethylammonium
- 27. 1.4×10⁻¹¹

6. 8.3×10⁻⁴ NaOH

17. H₃O⁺, hydronium

28. 2.3×10^{-5}

- 7. $2.4 \times 10^{-5} \text{ M Sr(OH)}_2$
- 18. CNO⁻, cyanate

29. 2.9×10⁻¹¹

8. 0.022 M HClO_4

- $19. \quad H_2 As O_4^- \text{, dihydrogen arsenate} \\$
- 30. 6.4×10⁻⁸

9. 2.1 g KOH

- 20. $C_2H_5NH_2$, ethylamine
- 31. 1.6×10⁻¹⁰

- 10. $CH_3NH_3^+$, methylammonium
- 21. H_2O , water

32. 5.9×10^{-6}

- 11. C₄H₉NH₃⁺, butylammonium
- 22. PO₄³⁻, phosphate

33. 1.8×10⁻⁴

Brown, LeMay, et al, 13th