5. ACIDS AND BASES III - Weak Acids and Bases

CHE 112 Q \& A
These problems are intended to supplement the problems in the textbook, not replace them.
Data:

Acids				
Name	Formula	$K_{a 1}$	$K_{a 2}$	$K_{a 3}$
acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	X	X
ascorbic acid	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$	8.0×10^{-5}	1.6×10^{-12}	X
benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.3×10^{-5}	x	X
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	x
citric acid	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
cyanic acid	HCNO	3.5×10^{-4}	x	X
hydrocyanic acid	HCN	4.9×10^{-10}	X	X
hydrofluoric acid	HF	6.8×10^{-4}	x	X
hypochlorous acid	HClO	3.0×10^{-8}	x	X
hypobromous acid	HBrO	2.5×10^{-9}	x	X
hypoiodous acid	HIO	2.3×10^{-11}	X	X
lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}	x	X
oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	x
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	x

Bases		
Name	Formula	K_{b}
ammonia	NH_{3}	1.8×10^{-5}
aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}
butylamine	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$	5.9×10^{-4}
dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	5.4×10^{-4}
ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}
hydroxylamine	$\mathrm{NH}_{2} \mathrm{OH}$	1.1×10^{-8}
methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.4×10^{-5}

Questions

Calculate the $\mathbf{p H}$ and percent ionization for the following aqueous solutions:

1. $\quad 0.150 \mathrm{M}$ acetic acid
2. $\quad 0.220 \mathrm{M}$ lactic acid
3. 0.00800 M hypobromous acid
4. $\quad 0.500 \mathrm{M}$ ammonia
5. $\quad 0.135 \mathrm{M}$ ethylamine
6. $\quad 0.0475 \mathrm{M}$ aniline

Calculate the dissociation constant (K_{a} or K_{b}) for the following weak acid and base solutions at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (assume all acids are monoprotic):
7. a 0.375 M acid solution has a pH of 2.89
8. a 1.00 M acid solution has a pH of 3.67
9. a solution is initially 0.0884 M in an acid which is 21.4% ionized at equilibrium
10. a solution is initially 0.500 M in an acid which is 4.7% ionized at equilibrium
11. a 6.38 M base solution has a pH of 13.88
12. a 0.00975 M base solution has a pH of 8.95
13. a solution is initially 0.0325 M in a base which is 63.7% ionized at equilibrium

Answer the following questions.

14. What molarity of hydrocyanic acid is needed for a pH of 4.97 ?
15. What molarity of hydrofluoric acid is needed for a pH of 2.75 ?
16. How many grams of lactic acid are needed to make 5.00 L of a solution with $\mathrm{pH}=3.00$?
17. What molarity of trimethylamine is needed for a pH of 12.00 ?
18. How many grams of pyridine are needed to make 100.0 mL of a solution with a pH of 8.75 ?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1. $2.80,1.1 \%$
2. $2.26,2.5 \%$
3. $5.35,0.056 \%$
4. $11.48,0.60 \%$
5. $11.95,6.7 \%$
6. $8.65,0.0095 \%$
7. $\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-6}$
8. $\mathrm{K}_{\mathrm{a}}=4.4 \times 10^{-8}$
9. $\mathrm{K}_{\mathrm{a}}=5.14 \times 10^{-3}$
10. $\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-3}$
11. $\mathrm{K}_{\mathrm{b}}=0.10$
12. $\mathrm{K}_{\mathrm{b}}=8.1 \times 10^{-9}$
13. $\mathrm{K}_{\mathrm{b}}=3.63 \times 10^{-2}$
14. 0.25 M HCN
15. 0.0066 M HF
16. $3.6 \mathrm{~g} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$
17. $1.6 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
18. $0.14 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
