5. ACIDS AND BASES III – Weak Acids and Bases

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Data:

Acids							
Name	Formula	K _{a1}	K _{a2}	K _{a3}			
acetic acid	HC ₂ H ₃ O ₂	1.8×10 ⁻⁵	х	Х			
ascorbic acid	$H_2C_6H_6O_6$	8.0×10 ⁻⁵	1.6×10 ⁻¹²	Х			
benzoic acid	$HC_7H_5O_2$	6.3×10 ⁻⁵	х	Х			
carbonic acid	H ₂ CO ₃	4.3×10 ⁻⁷	5.6×10 ⁻¹¹	Х			
citric acid	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}			
cyanic acid	HCNO	3.5×10^{-4}	х	Х			
hydrocyanic acid	HCN	4.9×10 ⁻¹⁰	х	Х			
hydrofluoric acid	HF	6.8×10^{-4}	х	Х			
hypochlorous acid	HClO	3.0×10 ⁻⁸	х	Х			
hypobromous acid	HBrO	2.5×10^{-9}	х	Х			
hypoiodous acid	HIO	2.3×10 ⁻¹¹	х	Х			
lactic acid	$HC_3H_5O_3$	1.4×10^{-4}	х	Х			
oxalic acid	$H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	Х			
phosphoric acid	H ₃ PO ₄	7.5×10 ⁻³	6.2×10 ⁻⁸	4.2×10 ⁻¹³			
sulfurous acid	H ₂ SO ₃	1.7×10 ⁻²	6.4×10 ⁻⁸	Х			

Bases					
Name	Formula	K _b			
ammonia	NH ₃	1.8×10^{-5}			
aniline	$C_6H_5NH_2$	4.3×10^{-10}			
butylamine	$C_4H_9NH_2$	5.9×10^{-4}			
dimethylamine	(CH ₃) ₂ NH	5.4×10 ⁻⁴			
ethylamine	$C_2H_5NH_2$	6.4×10^{-4}			
hydroxylamine	NH ₂ OH	1.1×10^{-8}			
methylamine	CH ₃ NH ₂	4.4×10^{-4}			
pyridine	C_5H_5N	1.7×10^{-9}			
trimethylamine	(CH ₃) ₃ N	6.4×10 ⁻⁵			

Questions

Calculate the pH and percent ionization for the following aqueous solutions:

1.	0.150 M acetic acid	4.	0.500 M ammonia
2.	0.220 M lactic acid	5.	0.135 M ethylamine
3.	0.00800 M hypobromous acid	6.	0.0475 M aniline

Calculate the dissociation constant (K_a or K_b) for the following weak acid and base solutions at 25 °C (assume all acids are monoprotic):

- 7. a 0.375 M acid solution has a pH of 2.89
- 8. a 1.00 M acid solution has a pH of 3.67
- 9. a solution is initially 0.0884 M in an acid which is 21.4% ionized at equilibrium
- 10. a solution is initially 0.500 M in an acid which is 4.7% ionized at equilibrium
- 11. a 6.38 M base solution has a pH of 13.88

- 12. a 0.00975 M base solution has a pH of 8.95
- 13. a solution is initially 0.0325 M in a base which is 63.7% ionized at equilibrium

Answer the following questions.

- 14. What molarity of hydrocyanic acid is needed for a pH of 4.97?
- 15. What molarity of hydrofluoric acid is needed for a pH of 2.75?
- 16. How many grams of lactic acid are needed to make 5.00 L of a solution with pH = 3.00?
- 17. What molarity of trimethylamine is needed for a pH of 12.00?
- 18. How many grams of pyridine are needed to make 100.0 mL of a solution with a pH of 8.75?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1.	2.80, 1.1%	10.	$K_a = 1.2 \times 10^{-3}$
2.	2.26, 2.5%	11.	K _b = 0.10
3.	5.35, 0.056%	12.	$K_b = 8.1 \times 10^{-9}$
4.	11.48, 0.60%	13.	$K_b = 3.63 \times 10^{-2}$
5.	11.95, 6.7%	14.	0.25 M HCN
6.	8.65, 0.0095%	15.	0.0066 M HF
7.	$K_a = 4.5 \times 10^{-6}$	16.	3.6 g HC ₃ H ₅ O ₃
8.	$K_a = 4.4 \times 10^{-8}$	17.	1.6 M (CH ₃) ₃ N
9.	$K_a = 5.14 \times 10^{-3}$	18.	0.14 g C ₅ H ₅ N