These problems are intended to supplement the problems in the textbook, not replace them.
Data:

Acids				
Name	Formula	$K_{a 1}$	$K_{a 2}$	$K_{a 3}$
acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	x	x
ascorbic acid	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$	8.0×10^{-5}	1.6×10^{-12}	x
benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.3×10^{-5}	x	x
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	x
citric acid	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
cyanic acid	HCNO	3.5×10^{-4}	x	x
hydrocyanic acid	HCN	4.9×10^{-10}	x	x
hydrofluoric acid	HF	6.8×10^{-4}	X	X
hypochlorous acid	HClO	3.0×10^{-8}	X	X
hypobromous acid	HBrO	2.5×10^{-9}	X	X
hypoiodous acid	HIO	2.3×10^{-11}	x	X
lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}	x	X
oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	x
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	x

Bases		
Name	Formula	K_{b}
ammonia	NH_{3}	1.8×10^{-5}
aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}
butylamine	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$	5.9×10^{-4}
dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	5.4×10^{-4}
ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}
hydroxylamine	$\mathrm{NH}_{2} \mathrm{OH}$	1.1×10^{-8}
methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.4×10^{-5}

Questions

Indicate whether the following aqueous salt solutions are acidic, basic, or neutral:

1. potassium fluoride, KF
2. ammonium bromide, $\mathrm{NH}_{4} \mathrm{Br}$
3. sodium lactate, $\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$
4. aluminum nitrate, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
5. anilinium hypobromite, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{BrO}$
6. sodium hydrogen oxalate, $\mathrm{NaHC}_{2} \mathrm{O}_{4}$
7. iron(III) chloride, FeCl_{3}
8. methylammonium perchlorate, $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{ClO}_{4}$
9. dimethylammonium cyanide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{CN}$
10. potassium iodide, KI

Calculate the $\mathbf{p H}$ for the following aqueous salt solutions:

11. $\quad 0.350 \mathrm{M}$ sodium hypochlorite, NaClO
12. 0.0621 M potassium benzoate, $\mathrm{KC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
13. 0.566 M sodium oxalate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
14. 0.775 M butylammonium chloride, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3} \mathrm{Cl}$
15. 0.00215 M trimethylammonium nitrate, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHNO}_{3}$
16. 0.0543 M anilinium bromide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Br}$

Answer the following questions.

17. What concentration of sodium cyanate, NaCNO gives a solution with $\mathrm{pH}=8.19$?
18. What concentration of potassium hypobromite, KBrO gives a solution with $\mathrm{pH}=10.46$?
19. What concentration of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ gives a solution with $\mathrm{pH}=4.88$?
20. What concentration of ethylammonium iodide, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{I}$ gives a solution with $\mathrm{pH}=5.12$?
21. A 0.18 M solution of the sodium salt of a certain acid (NaX) has a pH of 9.05 . What is K_{a} for the acid (HX)?
22. A weak base, B , forms the salt $\mathrm{BHCl}\left(\mathrm{BH}^{+}\right.$and $\left.\mathrm{Cl}^{-}\right)$. A 0.15 M solution of this salt has a pH of 4.28 . What is K_{b} for the base?
23. Liquid chlorine bleach is typically an aqueous solution of sodium hypochlorite, NaClO . Usually, the concentration is approximately $5 \% \mathrm{NaClO}$ by weight. Calculate the approximate pH of a bleach solution. Assume no other solutes are present in the solution, and that the density of the solution is $1.0 \mathrm{~g} / \mathrm{mL}$.

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.
Note: minor differences in the final answer may be due to different ways of solving the problems and are not a cause for concern.

1.	basic	13.	8.98
2.	acidic	14.	5.44
3.	basic	15.	6.23
4.	acidic	16.	2.96
5.	acidic $\left(\mathrm{K}_{\mathrm{a}}\right.$ for cation $>\mathrm{K}_{\mathrm{b}}$ for anion $)$	17.	0.078 M NaCNO
6.	acidic $\left(\mathrm{K}_{\mathrm{a}}\right.$ for $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}>\mathrm{K}_{\mathrm{b}}$ for $\left.\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right)$	18.	0.021 M KBrO
7.	acidic	19.	$0.30 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
8.	acidic	20.	$3.6 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{I}$
9.	basic $\left(\mathrm{K}_{\mathrm{b}}\right.$ for anion $>\mathrm{K}_{\mathrm{a}}$ for cation $)$	21.	1.5×10^{-5}
10.	neutral	22.	5.6×10^{-7}
11.	10.53	23.	10.7
12.	8.51		

