7. ACIDS AND BASES V - Buffers and Titrations

These problems are intended to supplement the problems in the textbook, not replace them.
Data:

Acids				
Name	Formula	$K_{a 1}$	$K_{a 2}$	$K_{a 3}$
acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	x	X
ascorbic acid	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$	8.0×10^{-5}	1.6×10^{-12}	x
benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.3×10^{-5}	x	x
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	x
citric acid	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
cyanic acid	HCNO	3.5×10^{-4}	x	x
hydrocyanic acid	HCN	4.9×10^{-10}	x	x
hydrofluoric acid	HF	6.8×10^{-4}	x	x
hypochlorous acid	HClO	3.0×10^{-8}	x	x
hypobromous acid	HBrO	2.5×10^{-9}	x	X
hypoiodous acid	HIO	2.3×10^{-11}	x	X
lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}	x	x
oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	x
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	x

Bases		
Name	Formula	K_{b}
ammonia	NH_{3}	1.8×10^{-5}
aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}
butylamine	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$	5.9×10^{-4}
dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	5.4×10^{-4}
ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}
hydroxylamine	$\mathrm{NH}_{2} \mathrm{OH}$	1.1×10^{-8}
methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.4×10^{-5}

Questions

Calculate the pH for the following:

1. 765 mL of solution that contains 5.00 g hydrocyanic acid, HCN and 13.0 g KCN , potassium cyanide
2. a solution that is prepared by dissolving 0.010 mol sodium lactate, $\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$ in 100.0 mL of 0.035 M lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$
3. 0.500 L of solution that contains 1.51 g ammonia, NH_{3} and 3.85 g ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$
4. a solution that is prepared by dissolving 0.700 mol ethylammonium bromide, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Br}$ in 3.00 L of 0.200 M ethylamine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$

Answer the following questions.

5. How many grams of potassium cyanide, KCN do you need in 250.0 mL of 0.50 M hydrocyanic acid, HCN to make a buffer with $\mathrm{pH}=9.50$?
6. What mass of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$ must be added to 320.0 mL of 0.105 M ammonia, NH_{3} to give a buffer with $\mathrm{pH}=9.35$?
7. What is the concentration of trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in a buffer solution which is 0.100 M in trimethylammonium ion, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$if the pH is 10.41 ?
8. A solution is prepared from 0.0208 moles of a weak acid, HX , and 0.00700 moles of NaX , diluted to 200.0 mL . It has a pH of 3.66. What is K_{a} for the acid?
9. A solution is prepared from 0.100 moles of a weak acid, HY , and 0.00800 moles of CaY_{2}, diluted to 3.00 L . It has a pH of 5.20 . What is K_{a} for the acid?

875 mL of buffer solution is 0.200 M in benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ and 0.150 M in potassium benzoate, $\mathrm{KC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$.
10. What is the pH of this buffer solution?
11. What is the pH of the solution after 10.0 mL of 2.00 M HCl has been added?
12. What is the pH of the solution after 15.0 mL of 1.00 M NaOH has been added?
4.00 L of buffer solution is 0.175 M in methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and 0.200 M in methylammonium chloride, $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$.
13. What is the pH of this buffer solution?
14. What is the pH of the solution after 10.0 mL of 2.00 M HCl has been added?
15. What is the pH of the solution after 15.0 mL of 1.00 M NaOH has been added?
$\mathbf{2 0 0 . 0} \mathbf{~ m L}$ of $\mathbf{0 . 4 5 0} \mathrm{M}$ hypobromous acid, HBrO is being titrated with 0.250 M KOH .
16. What is the pH before any KOH has been added?
17. What is the pH after 100.0 mL of KOH has been added?
18. What is the pH after 360.0 mL of KOH has been added?
19. What is the pH after 400.0 mL of KOH has been added?

625 mL of 0.320 M pyridine is being titrated with $0.780 \mathrm{M} \mathrm{HNO}_{3}$.

20. What is the pH before any HNO_{3} has been added?
21. What volume of HNO_{3} is needed to reach the equivalence point?
22. What is the pH at the equivalence point?
23. What is the pH after 150.0 mL of HNO_{3} has been added?
24. What is the pH after 300.0 mL of HNO_{3} has been added?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.
Note: minor differences in the final answer may be due to different ways of solving the problems and are not a cause for concern.

1. 9.34
2. 4.31
3. $\quad 9.34$
4. $\quad 10.73$
5. 12 g KCN
6. $\quad 1.4 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$
7. $\quad 0.41 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
8. 7.4×10^{-5}
9. 1.0×10^{-6}
10. 4.08
11. 3.95
12. 4.16
13. 10.58
14. 10.57
15. 10.60
16. 4.47
17. 8.18
18. 10.90
19. 12.23
20. 9.36
21. 256 mL
22. 2.92
23. 5.09
24. 1.43
