7. ACIDS AND BASES V – Buffers and Titrations

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Data:

Acids									
Name	Formula	K _{a1}	K _{a2}	K _{a3}					
acetic acid	$HC_2H_3O_2$	1.8×10^{-5}	х	х					
ascorbic acid	$H_2C_6H_6O_6$	8.0×10^{-5}	1.6×10^{-12}	Х					
benzoic acid	$HC_7H_5O_2$	6.3×10 ⁻⁵	х	Х					
carbonic acid	H ₂ CO ₃	4.3×10^{-7}	5.6×10^{-11}	Х					
citric acid	$H_3C_6H_5O_7$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}					
cyanic acid	HCNO	3.5×10^{-4}	х	Х					
hydrocyanic acid	HCN	4.9×10^{-10}	х	Х					
hydrofluoric acid	HF	6.8×10^{-4}	х	Х					
hypochlorous acid	HClO	3.0×10^{-8}	х	Х					
hypobromous acid	HBrO	2.5×10^{-9}	х	Х					
hypoiodous acid	HIO	2.3×10^{-11}	х	Х					
lactic acid	$HC_3H_5O_3$	1.4×10^{-4}	х	Х					
oxalic acid	$H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	Х					
phosphoric acid	H ₃ PO ₄	7.5×10 ⁻³	6.2×10 ⁻⁸	4.2×10 ⁻¹³					
sulfurous acid	H ₂ SO ₃	1.7×10^{-2}	6.4×10 ⁻⁸	Х					

Bases							
Name	Formula	K_b					
ammonia	NH ₃	1.8×10^{-5}					
aniline	$C_6H_5NH_2$	4.3×10^{-10}					
butylamine	$C_4H_9NH_2$	5.9×10^{-4}					
dimethylamine	(CH ₃) ₂ NH	5.4×10^{-4}					
ethylamine	$C_2H_5NH_2$	6.4×10^{-4}					
hydroxylamine	NH ₂ OH	1.1×10 ⁻⁸					
methylamine	CH ₃ NH ₂	4.4×10^{-4}					
pyridine	C ₅ H ₅ N	1.7×10^{-9}					
trimethylamine	(CH ₃) ₃ N	6.4×10 ⁻⁵					

Questions

Calculate the pH for the following:

- 1. 765 mL of solution that contains 5.00 g hydrocyanic acid, HCN and 13.0 g KCN, potassium cyanide
- 2. a solution that is prepared by dissolving 0.010 mol sodium lactate, $NaC_3H_5O_3$ in 100.0 mL of 0.035 M lactic acid, $HC_3H_5O_3$
- 3. 0.500 L of solution that contains 1.51 g ammonia, NH₃ and 3.85 g ammonium chloride, NH₄Cl
- 4. a solution that is prepared by dissolving 0.700 mol ethylammonium bromide, $C_2H_5NH_3Br$ in 3.00 L of 0.200 M ethylamine, $C_2H_5NH_2$

Answer the following questions.

- 5. How many grams of potassium cyanide, KCN do you need in 250.0 mL of 0.50 M hydrocyanic acid, HCN to make a buffer with pH = 9.50?
- 6. What mass of ammonium chloride, NH_4Cl must be added to 320.0 mL of 0.105 M ammonia, NH_3 to give a buffer with pH = 9.35?
- 7. What is the concentration of trimethylamine, $(CH_3)_3N$ in a buffer solution which is 0.100 M in trimethylammonium ion, $(CH_3)_3NH^+$ if the pH is 10.41?
- 8. A solution is prepared from 0.0208 moles of a weak acid, HX, and 0.00700 moles of NaX, diluted to 200.0 mL. It has a pH of 3.66. What is K_a for the acid?

9. A solution is prepared from 0.100 moles of a weak acid, HY, and 0.00800 moles of CaY₂, diluted to 3.00 L. It has a pH of 5.20. What is K_a for the acid?

875 mL of buffer solution is 0.200 M in benzoic acid, HC₇H₅O₂ and 0.150 M in potassium benzoate, KC₇H₅O₂.

- 10. What is the pH of this buffer solution?
- 11. What is the pH of the solution after 10.0 mL of 2.00 M HCl has been added?
- 12. What is the pH of the solution after 15.0 mL of 1.00 M NaOH has been added?

4.00 L of buffer solution is 0.175 M in methylamine, CH_3NH_2 and 0.200 M in methylammonium chloride, CH_3NH_3Cl .

- 13. What is the pH of this buffer solution?
- 14. What is the pH of the solution after 10.0 mL of 2.00 M HCl has been added?
- 15. What is the pH of the solution after 15.0 mL of 1.00 M NaOH has been added?

200.0 mL of 0.450 M hypobromous acid, HBrO is being titrated with 0.250 M KOH.

- 16. What is the pH before any KOH has been added?
- 17. What is the pH after 100.0 mL of KOH has been added?
- 18. What is the pH after 360.0 mL of KOH has been added?
- 19. What is the pH after 400.0 mL of KOH has been added?

625 mL of 0.320 M pyridine is being titrated with 0.780 M HNO₃.

- 20. What is the pH before any HNO_3 has been added?
- 21. What volume of HNO_3 is needed to reach the equivalence point?
- 22. What is the pH at the equivalence point?
- 23. What is the pH after 150.0 mL of HNO_3 has been added?
- 24. What is the pH after $300.0 \text{ mL of HNO}_3$ has been added?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

Note: minor differences in the final answer may be due to different ways of solving the problems and are not a cause for concern.

1.	9.34	7.	0.41 M (CH ₃) ₃ N	13.	10.58	19.	12.23
2.	4.31	8.	7.4×10 ⁻⁵	14.	10.57	20.	9.36
3.	9.34	9.	1.0×10 ⁻⁶	15.	10.60	21.	256 mL
4.	10.73	10.	4.08	16.	4.47	22.	2.92
5.	12 g KCN	11.	3.95	17.	8.18	23.	5.09
6.	$1.4 \text{ g NH}_4\text{Cl}$	12.	4.16	18.	10.90	24.	1.43