8. SOLUBILITY PRODUCT AND PRECIPITATION

These problems are intended to *supplement* the problems in the textbook, not *replace* them.
Data:

K _{sp} Values at 25 °C												
BaCO ₃	5.0×10 ⁻⁹		Ga(OH) ₃	1×10 ⁻³⁵		Ag ₂ CO ₃	8.1×10 ⁻¹²					
BaF ₂	1.7×10 ⁻⁶		Fe(OH) ₃	2.8×10 ⁻³⁹		AgCl	1.8×10^{-10}					
BaSO ₄	1.1×10^{-10}		PbBr ₂	6.6×10^{-6}		AgI	8.3×10 ⁻¹⁷					
Ca(OH) ₂	6.5×10 ⁻⁶		PbCl ₂	1.7×10^{-5}		Ag_2SO_4	1.5×10 ⁻⁵					
$Ca(IO_3)_2$	7.1×10 ⁻⁷		PbSO ₄	6.3×10 ⁻⁷		SrF ₂	4.3×10 ⁻⁹					
$Ca_{3}(PO_{4})_{2}$	2.0×10 ⁻²⁹		$Mg_3(PO_4)_2$	1.0×10^{-24}		SrSO ₄	3.4×10 ⁻⁷					
Cr(OH) ₃	6.7×10 ⁻³¹		Ni(OH) ₂	6.0×10 ⁻¹⁶		Zn(OH) ₂	3.0×10 ⁻¹⁶					

Note: Assume the temperature is 25°C, the solvent is water, and volumes are additive.

Questions

- 1. What is K_{sp} for MnCO₃ if its molar solubility is 4.7×10^{-6} M?
- 2. What is K_{sp} for $Ba_3(PO_4)_2$ if its molar solubility is 1.4×10^{-8} M?
- 3. What is K_{sp} for MgF₂ if its solubility is 0.015 g/L?
- 4. What is K_{sp} for PbCrO₄ if its solubility is 4.2×10^{-5} g/L?
- 5. What is the solubility (g/L) of Ag_2CO_3 ?
- 6. A student found that 0.800 g of $AgC_2H_3O_2$ is able to dissolve in 100.0 mL of water. What are the molar solubility (M) and K_{sp} for this salt?
- 7. A student prepared a saturated solution of $CaCrO_4$ and found that when 156 mL of the solution was evaporated, 0.649 g of $CaCrO_4$ was left behind. What are the molar solubility and K_{sp} for $CaCrO_4$?
- 8. What is the molar solubility (M) of $Ca(IO_3)_2$?
- 9. What is the solubility of $Mg_3(PO_4)_2$ in grams per 100 mL?
- 10. A salt whose formula is MX has a K_{sp} value of 3.2×10^{-10} . Another sparingly soluble salt, MX₃, must have what value of K_{sp} if the molar solubilities of the two salts are identical?
- 11. Calculate the molar solubility (M) of PbBr₂ in...
 - a. pure water
 - b. 0.200 M AlBr_3
 - c. $0.200 \text{ M Pb}(\text{NO}_3)_2$
- 12. Calculate the molar solubility (M) of $Ga(OH)_3$ in...
 - a. pure water
 - b. 0.800 M Ga(NO₃)₃
 - c. a solution with a pH of 9.88

- 13. How many moles of BaF₂ will dissolve in 250.0 mL of 0.12 M NaF solution?
- 14. What is the pH of a saturated zinc hydroxide solution?
- 15. The pH of a saturated metal hydroxide (MOH) solution is 9.68. What is K_{sp} for this metal hydroxide?
- 16. Will $BaCO_3$ precipitate if 20.0 mL of 0.10 M $Ba(NO_3)_2$ is mixed with 50.0 mL of 0.10 M Na_2CO_3 ?
- 17. If 25.0 mL of 0.015 M Pb(NO_3)₂ is mixed with 75.0 mL of 0.020 M AlCl₃ will precipitation occur?
- 18. If 2.00 mL of 0.200 M NaOH is mixed with 1.000 L of 0.100 M CaCl₂, will precipitation occur?
- 19. If 35.0 mL of 0.100 M CaCl₂ is mixed with 65.0 mL of 0.0400 M K_3PO_4 , will precipitation occur?
- 20. What concentration of F^- is needed to start precipitation of SrF_2 from a saturated $SrSO_4$ solution?
- 21. Both AgCl and AgI are very sparingly soluble salts. Suppose that a solution contains both chloride and iodide ions, with the concentration equal to 0.050 M for both. If solid $AgNO_3$ is added to 1.00 L of this mixture (and no volume change occurs), what is the concentration of iodide when AgCl first begins to precipitate?
- 22. A solution of Na_2SO_4 is added dropwise to a solution that is 0.010 M in Ba^{2+} and 0.010 M in Sr^{2+} .
 - a. What cation precipitates first?
 - b. What concentration of sulfate ion is needed to start precipitation?
- 23. What range of pH will allow separation of Zn²⁺ from Fe³⁺ by selective precipitation from a solution that is initially 0.010 M in both cations?
- 24. What range of pH will allow separation of Ni²⁺ from Cr³⁺ by selective precipitation from a solution that is initially 0.050 M in both cations?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1.	2.2×10 ⁻¹¹	11.	a.	0.012 M	17.	$Q_{sp} =$	$7.7 \times 10^{-6} < K_{sp} \Rightarrow no$
2.	5.8×10 ⁻³⁸		b.	$1.8 \times 10^{-5} \text{ M}$	18	0 =	$159 \times 10^{-8} < K \implies no$
-			C.	0.0029 M	10.	€sp	
3.	5.5×10 ⁻¹¹	12.	a.	$8 \times 10^{-10} \text{ M}$	19.	$Q_{sp} =$	$2.90 \times 10^{-8} > K_{sp} \Rightarrow yes$
4.	1.7×10^{-14}		b.	$8 \times 10^{-13} \mathrm{M}$	20.	0.0027 M	
5.	0.036 g/L		c.	2×10 ⁻²³ M	21.	2.3×2	10 ⁻⁸ M
6.	0.0479 M, 0.00229	13.	3.0×	10 ⁻⁵ mol	22.	a.	Ba ²⁺
7.	0.0267 M, 7.13×10 ⁻⁴	14.	8.92			b.	1.1×10 ⁻⁸ M
8.	0.0056 M	15.	2.3×10 ⁻⁹		23.	1.81 to 7.23	
9.	$1.6 \times 10^{-4} \text{ g}/100 \text{ mL}$	16.	$Q_{sp} =$	$0.0021 > K_{sp} \Rightarrow yes$	24.	4.38	to 7.04

10. 2.8×10^{-18}