13. ELECTROLYTIC CELLS

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

<i>E°</i> (<i>V</i>)	Half-Cell Reaction
+0.799	$Ag^+(aq) + e^- \rightarrow Ag(s)$
+0.095	$\operatorname{AgBr}(s) + e^{-} \rightarrow \operatorname{Ag}(s) + \operatorname{Br}(aq)$
-1.66	$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$
+1.42	$\operatorname{Au}^{3+}(aq) + 3e^{-} \rightarrow \operatorname{Au}(s)$
-2.90	$\operatorname{Ba}^{2+}(aq) + 2e^{-} \to \operatorname{Ba}(s)$
+1.065	$\operatorname{Br}_2(l) + 2e^- \rightarrow 2 \operatorname{Br}(aq)$
+1.52	$2 \operatorname{BrO}_{3^{-}}(aq) + 12 \operatorname{H}^{+}(aq) + 10e^{-} \rightarrow \operatorname{Br}_{2}(l) + 6 \operatorname{H}_{2}O(l)$
-0.403	$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$
+1.359	$\operatorname{Cl}_2(g) + 2e^- \rightarrow 2 \operatorname{Cl}^-(aq)$
-0.277	$\operatorname{Co}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Co}(s)$
+1.842	$\operatorname{Co}^{3+}(aq) + e^{-} \rightarrow \operatorname{Co}^{2+}(aq)$
-0.74	$\operatorname{Cr}^{3^+}(aq) + 3e^- \to \operatorname{Cr}(s)$
+1.33	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O$
+0.337	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Cu}(s)$
+0.153	$\operatorname{Cu}^{2+}(aq) + e^{-} \rightarrow \operatorname{Cu}^{+}(aq)$
+2.87	$F_2(g) + 2e^- \rightarrow 2 F(aq)$
-0.440	$\operatorname{Fe}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Fe}(s)$
+0.771	$\operatorname{Fe}^{3+}(aq) + e^{-} \rightarrow \operatorname{Fe}^{2+}(aq)$
0.000	$2 \operatorname{H}^{+}(aq) + 2e^{-} \rightarrow \operatorname{H}_{2}(g)$
-0.83	$2 \operatorname{H}_2 O(l) + 2e^- \rightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$
+0.88	$\mathrm{HO}_2^-(aq) + \mathrm{H}_2\mathrm{O}(l) + 2\mathrm{e}^- \rightarrow 3 \mathrm{OH}^-(aq)$
+1.776	$H_2O_2(aq) + 2 H^+(aq) + 2e^- \rightarrow 2 H_2O(l)$
+0.536	$I_2(s) + 2e^- \rightarrow 2I^-(aq)$

E° (V)	Half-Cell Reaction
-3.05	$\text{Li}^{+}(aq) + e^{-} \rightarrow \text{Li}(s)$
-2.37	$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$
-1.18	$Mn^{2+}(aq) + 2e^- \rightarrow Mn(s)$
+1.51	$Mn^{3+}(aq) + e^{-} \rightarrow Mn^{2+}(aq)$
+1.23	$\operatorname{MnO}_2(s) + 4 \operatorname{H}^+(aq) + 2e^- \to \operatorname{Mn}^{2+}(aq) + 2 \operatorname{H}_2O(l)$
+1.695	$MnO_4^-(aq) + 4 H^+(aq) + 3e^- \rightarrow MnO_2(s) + 2 H_2O(l)$
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4 H_2O(l)$
-1.16	$N_2(g) + 4 H_2O(l) + 4e^- \rightarrow N_2H_4(aq) + 4 OH^-(aq)$
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3e^- \rightarrow NO(g) + 2 H_2O(l)$
-0.28	$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$
+0.49	$\operatorname{NiO}_2(s) + 2\operatorname{H}_2\operatorname{O}(l) + 2e^- \rightarrow \operatorname{Ni}(\operatorname{OH})_2(s) + 2\operatorname{OH}^-(aq)$
+1.23	$O_2(g) + 4 \operatorname{H}^+(aq) + 4e^- \rightarrow 2 \operatorname{H}_2O(l)$
+2.07	$O_3(g) + 2H^+(aq) + 2e^- \rightarrow O_2(g) + H_2O(l)$
-0.126	$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$
+1.46	$PbO_2(s) + 4 H^+(aq) + 2e^- \rightarrow Pb^{2+}(aq) + 2 H_2O(l)$
+0.25	$PbO_2(s) + H_2O(l) + 2e^- \rightarrow PbO(s) + 2 OH^-(aq)$
+1.685	$PbO_2(s) + HSO_4(aq) + 3H^*(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O$
-0.356	$PbSO_4(s) + H^*(aq) + 2e^- \rightarrow Pb(s) + HSO_4(aq)$
+1.20	$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$
-0.136	$\operatorname{Sn}^{2+}(aq) + 2e^{-} \to \operatorname{Sn}(s)$
+0.45	$SO_2(aq) + 4 \operatorname{H}^+(aq) + 4e^- \rightarrow S(s) + 2 \operatorname{H}_2O(l)$
-1.18	$V^{2+}(aq) + 2e^- \rightarrow V(s)$
-0.763	$\operatorname{Zn}^{2+}(aq) + 2e^{-} \to \operatorname{Zn}(s)$

Questions

For each of the following electrolytic cells...

- a. Determine the most likely anode half-reaction.
- b. Determine the most likely cathode half-reaction.
- c. Calculate E°_{cell} .
- 1. molten $BaBr_2$ with two inert electrodes
- 2. molten LiF with two inert electrodes
- 3. molten CuCl₂ with two inert electrodes
- 4. aqueous CoF_2 with two inert electrodes
- 5. aqueous $Pb(NO_3)_2$ in acidic solution with two inert electrodes
- 6. aqueous $FeCl_2$ in basic solution with one copper electrode and one inert electrode
- 7. aqueous MnI_2 in acidic solution with one NiO_2 electrode and one inert electrode
- 8. aqueous AgNO₃ in acidic solution with one gold electrode and one platinum electrode

Answer the following questions.

- 9. a. Calculate the mass of magnesium formed by electrolysis of molten $MgCl_2$ by a current of 7.6×10^3 A flowing for 24 hours. Assume the electrolytic cell is 85% efficient.
 - b. What is the energy requirement for this electrolysis is the applied emf is 2.80 V? Express the answer in terms of kilowatt-hour per kg of magnesium formed.
- 10. a. Calculate the mass of aluminum formed by electrolysis of molten AlF_3 by a current of 5.95×10^5 A flowing for 15.5 hours. Assume the electrolytic cell is 75.0% efficient.
 - b. What is the energy requirement for this electrolysis is the applied emf is 2.25 V? Express the answer in terms of kilowatt-hour per kg of aluminum formed.
- 11. a. Calculate the mass of nickel formed by electrolysis of molten $NiBr_2$ by a current of 6.8×10^4 A flowing for 18 hours. Assume the electrolytic cell is 80.0% efficient.
 - b. What is the energy requirement for this electrolysis is the applied emf is 0.50 V? Express the answer in terms of kilowatt-hour per kg of nickel formed.
- 12. A Pb^{2+} solution is electrolyzed in a cell with 80.0% efficiency.
 - a. If the current is 155 A, then what mass of lead is plated out after 4.00 days?
 - b. What current is required to plate out 1.00 pound of lead in 24.0 hours?
- 13. A Cl⁻ solution is electrolyzed in a cell with 70.0% efficiency.
 - a. If the current is 17.5 A, then after 2.00 hours what volume of chlorine gas is collected at STP?
 - b. What current is required to produce 5.00 L of chlorine gas at STP in 90.0 minutes?
- 14. Calcium metal can be obtained by the electrolysis of molten $CaCl_2$ at a voltage of 3.2 V.
 - a. How many joules of electrical energy are required to obtain 12.0 pounds of calcium? Assume 95% efficiency.
 - b. What is the cost of this energy at a rate of 12.5¢ per kilowatt-hour?
- 15. Lithium metal can be obtained by the electrolysis of molten LiCl at a voltage of 4.5 V.
 - a. How many joules of electrical energy are required to obtain 1 metric ton of lithium? Assume 80% efficiency.
 - b. What is the cost of this energy at a rate of 12.5¢ per kilowatt-hour?
- 16. A solution containing iron ions was electrolyzed with a 0.75 A current for 30.0 minutes and 0.3906 g of iron was deposited on the cathode. What was the charge on the iron ion? Assume 100% efficiency.

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc. The Faraday constant was taken to be 96,485 C/mol.

1.	a.	$2 \operatorname{Br}(l) \to \operatorname{Br}(l) + 2 \operatorname{e}$	b.	$\operatorname{Ba}^{2+}(l) + 2 e^{-} \to \operatorname{Ba}(l)$	c.	-3.97 V
2.	a.	$2 \operatorname{F}(l) \rightarrow \operatorname{F}_2(g) + 2 \operatorname{e}^-$	b.	$\mathrm{Li}^{1+}(l) + \mathrm{e}^{-} \rightarrow \mathrm{Li}(l)$	c.	-5.92 V

3.	a.	$2 \operatorname{Cl}(l) \rightarrow \operatorname{Cl}_2(g) + 2 e^{-1}$		b. $\operatorname{Cu}^{2+}(l) + 2 e^{-} \rightarrow \operatorname{Cu}(l)$	c.	-1.022 V			
4.	a.	$2 H_2O(l) \rightarrow O_2(g) + 4 H^+(aq)$	+4e	b. $\operatorname{Co}^{2+}(aq) + 2 e^{-} \rightarrow \operatorname{Co}(s)$	c.	-1.51 V			
5.	b.	$2 H_2O(l) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^-$ NO ₃ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻ \rightarrow NO(g) + 2 H ₂ O(l) -0.27 V							
6.	a.	$\operatorname{Cu}(s) \rightarrow \operatorname{Cu}^{2+}(aq) + 2 e^{-}$		b. $\operatorname{Fe}^{2+}(aq) + 2 e^{-} \rightarrow \operatorname{Fe}(s)$	c.	-0.777 V			
7.	b.	$2 I^{-}(aq) \rightarrow I_{2}(s) + 2 e^{-}$ NiO ₂ (s) + 2 H ₂ O(l) + 2 e ⁻ \rightarrow Ni(OH) ₂ (s) + 2 OH ⁻ (aq) -0.05 V							
8.	b.	Pt(s) → Pt ²⁺ (aq) + 2 e ⁻ NO ₃ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻ → NO(g) + 2 H ₂ O(l) -0.24 V							
9.	a.	$7.0 \times 10^4 \mathrm{g}$	b.	7.3 kwh per kg Mg					
10.	a.	2.32×10^{6} g Al	b.	8.94 kwh per kg Al					
11.	a.	1.1×10 ⁶ g Ni	b.	0.56 kwh per kg Ni					
12.	a.	4.60×10^4 g Pb	b.	6.11 A					
13.	a.	10.2 L Cl_2 at STP	b.	11.4 A					
14.	a.	8.8×10 ⁷ J	b.	\$3.1					
15.	a.	7.8×10^{10} J	b.	\$2700					
10	. 1								

16. +2