15. KINETICS II – Zero, First, Second Order Reactions

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Questions

Consider this reaction: $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$

The following data were collected at a particular temperature:

time (s)	0	1,200	2,000	6,000	10,000	15,000	20,000
$[CH_3CHO](M)$	0.0500	0.0300	0.0240	0.0120	0.0080	0.0056	0.0043

- 1. Graphically determine whether this reaction is zero, first or second order.
- 2. Write the rate law, including a value for the rate constant (with its correct units).
- 3. What is the initial half-life for this reaction?
- 4. How long will it take the concentration of acetaldehyde, CH₃CHO, to be equal to 1.00% of its original value?
- 5. What is the concentration of acetaldehyde after 10.0 hours?

Consider this reaction: $2 \operatorname{NO}_2 \operatorname{Cl}(g) \rightarrow 2 \operatorname{NO}_2(g) + \operatorname{Cl}_2(g)$

The following data were collected at a particular temperature:

time (min)	0	5.00	10.0	15.0	20.0	30.0
$[NO_2Cl](M)$	5.000	4.375	3.750	3.125	2.500	1.250

- 6. Graphically determine whether this reaction is zero, first or second order.
- 7. Write the rate law, including a value for the rate constant (with its correct units).
- 8. What is the initial half-life for this reaction?
- 9. How long will it take the concentration of NO₂Cl to reach 0.100 M?
- 10. What is the concentration of NO_2Cl after 12.5 minutes?

Consider this reaction: $2 A \rightarrow B + 3 C$

The following data were collected at a particular temperature:

time (s)	0	30.0	60.0	90.0	120.0	240.0	360.0
[A] (M)	0.0500	0.0380	0.0310	0.0260	0.0230	0.0150	0.0110

- 11. Graphically determine whether this reaction is zero, first or second order.
- 12. Write the rate law, including a value for the rate constant (with its correct units).
- 13. What is the initial half-life for this reaction?
- 14. What is the concentration of A after 1.00 hour?
- 15. How many minutes will it take [A] to decrease from 0.0400 M to 0.0200 M?

Consider this reaction: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

time (min)	0	100	200	300	400	500
$[SO_2Cl_2](M)$	0.1000	0.0876	0.0768	0.0673	0.0590	0.0517
time (min)	600	700	800	900	1000	1100
$[SO_2Cl_2](M)$	0.0453	0.0397	0.0348	0.0305	0.0267	0.0234

The following data were collected at a particular temperature:

- 16. Graphically determine whether this reaction is zero, first or second order.
- 17. Write the rate law, including a value for the rate constant (with its correct units).
- 18. What is the initial half-life for this reaction?
- 19. How long will it take $[SO_2Cl_2]$ to reach 0.0100 M?
- 20. What is the concentration of SO_2Cl_2 after 1.00 hour?

Answer the following questions.

- 21. For a reaction that is zero-order with respect to reactant A, what will be the concentration of A after 26 minutes if the initial concentration of A is 0.54 M and the rate constant is 3.8×10^{-3} M/min?
- 22. The half-life for a first-order reaction is 276 minutes. What is the rate constant?
- 23. If 1.23 mg of a 5.00 mg sample of arsenic-78 remains after 182 minutes, what is the half-life of arsenic-78? The decay process is first-order.
- 24. A first-order reaction has a half-life of 4.48 months. How long will it take for the concentration to decrease to 25% of its original value?
- 25. The decomposition of a pesticide in water is second-order, with a half-life of 3.50 years. The initial concentration is 6.75 mg/mL. How long will it take for the concentration to decrease to 1.50 mg/mL?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc. Note: Answers obtained graphically should be similar to those listed here, but may not be exactly equal.

1.	second	11.	second	21.	0.44 M
2.	rate = $0.011 \text{ M}^{-1} \cdot \text{s}^{-1} [\text{CH}_3\text{CHO}]^2$	12.	rate = $0.195 \text{ M}^{-1} \cdot \text{s}^{-1} [\text{A}]^2$	22.	0.00251 min^{-1}
3.	1.8×10 ³ s (30 min)	13.	103 s	23.	90.0 min
4.	1.8×10 ⁵ s (50 hr)	14.	1.39×10⁻³ M	24.	8.97 months
5.	0.0024 M	15.	2.14 min	25.	12.3 years
6.	zero	16.	first		
7.	rate = 0.125 M/min	17.	rate = $0.00132 \text{ min}^{-1} [SO_2Cl_2]$		
8.	20.0 min	18.	525 min		
9.	39.2 min	19.	1.74×10 ³ min (29.1 hr)		
10.	3.44 M	20.	0.09239 M		