These problems are intended to supplement the problems in the textbook, not replace them.

Questions

Consider this reaction: $\mathrm{CH}_{3} \mathbf{C H O}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathbf{C O}(g)$
The following data were collected at a particular temperature:

time (s)	0	1,200	2,000	6,000	10,000	15,000	20,000
$\left[\mathrm{CH}_{3} \mathrm{CHO}\right](\mathrm{M})$	0.0500	0.0300	0.0240	0.0120	0.0080	0.0056	0.0043

1. Graphically determine whether this reaction is zero, first or second order.
2. Write the rate law, including a value for the rate constant (with its correct units).
3. What is the initial half-life for this reaction?
4. How long will it take the concentration of acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$, to be equal to 1.00% of its original value?
5. What is the concentration of acetaldehyde after 10.0 hours?

Consider this reaction: $2 \mathrm{NO}_{2} \mathrm{Cl}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\mathrm{Cl}_{2}(g)$
The following data were collected at a particular temperature:

time (min)	0	5.00	10.0	15.0	20.0	30.0
$\left[\mathrm{NO}_{2} \mathrm{Cl}\right](\mathrm{M})$	5.000	4.375	3.750	3.125	2.500	1.250

6. Graphically determine whether this reaction is zero, first or second order.
7. Write the rate law, including a value for the rate constant (with its correct units).
8. What is the initial half-life for this reaction?
9. How long will it take the concentration of $\mathrm{NO}_{2} \mathrm{Cl}$ to reach 0.100 M ?
10. What is the concentration of $\mathrm{NO}_{2} \mathrm{Cl}$ after 12.5 minutes?

Consider this reaction: $2 \mathrm{~A} \rightarrow \mathrm{~B}+3 \mathrm{C}$
The following data were collected at a particular temperature:

time (s)	0	30.0	60.0	90.0	120.0	240.0	360.0
$[A](M)$	0.0500	0.0380	0.0310	0.0260	0.0230	0.0150	0.0110

11. Graphically determine whether this reaction is zero, first or second order.
12. Write the rate law, including a value for the rate constant (with its correct units).
13. What is the initial half-life for this reaction?
14. What is the concentration of A after 1.00 hour?
15. How many minutes will it take [A] to decrease from 0.0400 M to 0.0200 M ?

Consider this reaction: $\mathrm{SO}_{2} \mathrm{Cl}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathrm{SO}_{\mathbf{2}}(\mathrm{g})+\mathrm{Cl}_{\mathbf{2}}(\mathrm{g})$
The following data were collected at a particular temperature:

time (min)	0	100	200	300	400	500
$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right](\mathrm{M})$	0.1000	0.0876	0.0768	0.0673	0.0590	0.0517

time (min)	600	700	800	900	1000	1100
$\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right](\mathrm{M})$	0.0453	0.0397	0.0348	0.0305	0.0267	0.0234

16. Graphically determine whether this reaction is zero, first or second order.
17. Write the rate law, including a value for the rate constant (with its correct units).
18. What is the initial half-life for this reaction?
19. How long will it take $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ to reach 0.0100 M ?
20. What is the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ after 1.00 hour?

Answer the following questions.

21. For a reaction that is zero-order with respect to reactant A , what will be the concentration of A after 26 minutes if the initial concentration of A is 0.54 M and the rate constant is $3.8 \times 10^{-3} \mathrm{M} / \mathrm{min}$?
22. The half-life for a first-order reaction is 276 minutes. What is the rate constant?
23. If 1.23 mg of a 5.00 mg sample of arsenic- 78 remains after 182 minutes, what is the half-life of arsenic-78? The decay process is first-order.
24. A first-order reaction has a half-life of 4.48 months. How long will it take for the concentration to decrease to 25% of its original value?
25. The decomposition of a pesticide in water is second-order, with a half-life of 3.50 years. The initial concentration is $6.75 \mathrm{mg} / \mathrm{mL}$. How long will it take for the concentration to decrease to $1.50 \mathrm{mg} / \mathrm{mL}$?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.
Note: Answers obtained graphically should be similar to those listed here, but may not be exactly equal.

1. second
2. rate $=0.011 \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2}$
3. $1.8 \times 10^{3} \mathrm{~s}(30 \mathrm{~min})$
4. $1.8 \times 10^{5} \mathrm{~s}(50 \mathrm{hr})$
5. $\quad 1.8 \times 10^{3} \mathrm{~s}(30 \mathrm{~min})$
6. $1.8 \times 10^{5} \mathrm{~s}(50 \mathrm{hr})$
7. $\quad 0.0024 \mathrm{M}$
8. second
9. $\quad 0.44 \mathrm{M}$
10. rate $=0.195 \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}[\mathrm{~A}]^{2}$
11. $0.00251 \mathrm{~min}^{-1}$
12. 103 s
13. 90.0 min
14. $\quad 1.39 \times 10^{-3} \mathrm{M}$
15. 8.97 months
16. 2.14 min
17. 12.3 years
18. zero
19. first
20. rate $=0.125 \mathrm{M} / \mathrm{min}$
21. rate $=0.00132 \mathrm{~min}^{-1}\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$
22. 20.0 min
23. 525 min
24. $\quad 39.2 \mathrm{~min}$
25. $1.74 \times 10^{3} \mathrm{~min}(29.1 \mathrm{hr})$
26. 3.44 M
27. $\quad 0.09239 \mathrm{M}$
