16. KINETICS III – Temperature Effects, Mechanisms

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Questions

The following data were collected for a particular reaction:

Temperature (°C)	320	340	360	380	400
rate constant ($M^{-1} \cdot s^{-1}$)	2.88×10^{-4}	4.87×10^{-4}	7.96×10 ⁻⁴	1.26×10 ⁻³	1.94×10 ⁻³

- 1. Graphically determine the activation energy.
- 2. Determine the activation energy using only the first and last sets of data.
- 3. Comment on how well the two activation energy values agree with each other, and propose a reason why.

Answer the following questions:

- 4. Calculate the activation energy for a reaction which has a rate constant of 2.61×10^{-5} s⁻¹ at 190.0 °C and a rate constant of 3.02×10^{-3} s⁻¹ at 250.0 °C.
- 5. Fireflies "flash" at a rate that depends on the temperature. At 29.0 °C, the average rate is 3.3 flashes every 10 seconds. At 23.0 °C, the average rate falls to 2.7 flashes every 10 seconds. Calculate the "energy of activation" for the flashing process.
- 6. At 35 °C, the rate constant for the hydrolysis of sucrose (where it splits into fructose and glucose) is 6.2×10^{-5} s⁻¹. The activation energy for this reaction is 108 kJ/mol. What is the rate constant at 45 °C?
- 7. The rates of many reactions approximately double for each 10 °C rise in temperature. Assuming a starting temperature of 25 °C, what would the activation energy be if the rate constant was twice as large at 35 °C?
- 8. The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide. At 21 °C, the uncatalyzed reaction has an activation energy of 125 kJ/mol. The enzyme catalyzes a mechanism with an activation energy of 46 kJ/mol. By what factor does urease increase the rate of urea hydrolysis at 21 °C? In other words, is the catalyzed reaction 10 times faster, 25 times faster, etc. ? Assume the frequency factor is the same for both mechanisms. (Hint: use the Arrhenius equation to find the ratio of the two rate constants.)
- 9. A particular reaction has an activation energy of 418 kJ/mol and a rate constant of 7.62×10⁻⁶ s⁻¹ at 25.0 °C. What is the rate constant at 75.0 °C?
- 10. Two first-order reactions have the same rate constant at 30 °C. Reaction A has an activation energy of 34.50 kJ/mol. Reaction B has an activation energy of 27.20 kJ/mol. Calculate the ratio of rate constants, k_A / k_B at 60 °C.

The reaction of nitrogen monoxide with oxygen to give nitrogen dioxide is an important process in the formation of brown smog:

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \to 2 \operatorname{NO}_2(g)$$

Experiments show that this reaction is third order overall. The following mechanism has been proposed:

step 1	NO + NO \rightarrow	N_2O_2
step 2	$N_2O_2 + O_2 \rightarrow$	$NO_2 + NO_2$

- 11. If the first step is rate-determining, then what is the rate law for the overall reaction?
- 12. If the second step is rate-determining, then what is the rate law for the overall reaction?
- 13. Is either of these consistent with the experimental observations?

The following mechanism has been proposed for a different reaction that converts nitrogen monoxide to nitrogen dioxide during smog formation:

step 1	$CO + OH \rightarrow$	$CO_2 + H$
step 2	$H + O_2 \rightarrow$	HOO
step 3	HOO + NO \rightarrow	$OH + NO_2$

- 14. Write the overall reaction.
- 15. List any reaction intermediates.
- 16. List any catalysts.
- 17. If the first step is rate-determining, then what is the rate law for the overall reaction?
- 18. If the second step is rate-determining, then what is the rate law for the overall reaction?

A possible mechanism for a gas-phase reaction is:

step 1	2 N0 ≓	N_2O_2	(fast)
step 2	$N_2O_2 + H_2 \rightarrow$	$H_2O + N_2O$	(slow)
step 3	$N_2O + H_2 \rightarrow$	$N_2 + H_2O$	(fast)

- 19. Write the overall reaction.
- 20. List any reaction intermediates.
- 21. List any catalysts.
- 22. What is the rate law for the overall reaction?

The following mechanism has been proposed for a particular reaction:

step 1	$H_2O_2 + I^- \rightarrow$	$H_2O + IO^-$	(slow)
step 2	$H_2O_2 + IO^- \rightarrow$	$H_2O + O_2 + I^-$	(fast)

- 23. Write the overall reaction.
- 24. List any reaction intermediates.
- 25. List any catalysts.
- 26. What is the rate law for the overall reaction?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

Note: Answers obtained graphically should be similar to those listed here, but probably will not be exactly equal.

1.	79.1 kJ/mol	10.	1.3	19.	$2 \text{ NO} + 2 \text{ H}_2 \rightarrow \text{N}_2 + 2 \text{ H}_2\text{O}$
2.	79 kJ/mol	11.	rate = $k[NO]^2$	20.	N_2O and N_2O_2
3.	Same since data fall very close to line	12.	rate = $k[NO]^2[O_2]$	21.	none
4	159 kI/mol	13.	only the second one	22.	rate = $k[NO]^2[H_2]$
т. 5	25 kI/mol	14.	$\mathrm{CO} + \mathrm{O}_2 + \mathrm{NO} \rightarrow \mathrm{CO}_2 + \mathrm{NO}_2$	23.	$2 \operatorname{H}_2\operatorname{O}_2 \rightarrow 2 \operatorname{H}_2\operatorname{O} + \operatorname{O}_2$
5. 6	$2 \times 10^{-4} \text{ s}^{-1}$	15.	H and HOO	24.	IO ⁻
0. 7	52 kl/mol	16.	ОН	25.	I-
<i>/</i> .	52 KJ/ III0I	17.	rate = k[CO][OH]	26	rate = $k[H_0, 1[I^-]$
8.	8×10 ¹⁰ times faster	18.	rate = $k[CO][OH][O_2][CO_2]^{-1}$	20.	
9.	$3 \times 10^5 \text{s}^{-1}$	-0.			