These problems are intended to supplement the problems in the textbook, not replace them.

Questions

The following data were collected for a particular reaction:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	320	340	360	380	400
rate constant $\left(\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}\right)$	2.88×10^{-4}	4.87×10^{-4}	7.96×10^{-4}	1.26×10^{-3}	1.94×10^{-3}

1. Graphically determine the activation energy.
2. Determine the activation energy using only the first and last sets of data.
3. Comment on how well the two activation energy values agree with each other, and propose a reason why.

Answer the following questions:

4. Calculate the activation energy for a reaction which has a rate constant of $2.61 \times 10^{-5} \mathrm{~s}^{-1}$ at $190.0^{\circ} \mathrm{C}$ and a rate constant of $3.02 \times 10^{-3} \mathrm{~s}^{-1}$ at $250.0^{\circ} \mathrm{C}$.
5. Fireflies "flash" at a rate that depends on the temperature. At $29.0^{\circ} \mathrm{C}$, the average rate is 3.3 flashes every 10 seconds. At $23.0^{\circ} \mathrm{C}$, the average rate falls to 2.7 flashes every 10 seconds. Calculate the "energy of activation" for the flashing process.
6. At $35^{\circ} \mathrm{C}$, the rate constant for the hydrolysis of sucrose (where it splits into fructose and glucose) is $6.2 \times 10^{-5} \mathrm{~s}^{-1}$. The activation energy for this reaction is $108 \mathrm{~kJ} / \mathrm{mol}$. What is the rate constant at $45^{\circ} \mathrm{C}$?
7. The rates of many reactions approximately double for each $10^{\circ} \mathrm{C}$ rise in temperature. Assuming a starting temperature of $25^{\circ} \mathrm{C}$, what would the activation energy be if the rate constant was twice as large at $35^{\circ} \mathrm{C}$?
8. The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide. At $21^{\circ} \mathrm{C}$, the uncatalyzed reaction has an activation energy of $125 \mathrm{~kJ} / \mathrm{mol}$. The enzyme catalyzes a mechanism with an activation energy of $46 \mathrm{~kJ} / \mathrm{mol}$. By what factor does urease increase the rate of urea hydrolysis at $21^{\circ} \mathrm{C}$? In other words, is the catalyzed reaction 10 times faster, 25 times faster, etc. ? Assume the frequency factor is the same for both mechanisms. (Hint: use the Arrhenius equation to find the ratio of the two rate constants.)
9. A particular reaction has an activation energy of $418 \mathrm{~kJ} / \mathrm{mol}$ and a rate constant of $7.62 \times 10^{-6} \mathrm{~s}^{-1}$ at $25.0^{\circ} \mathrm{C}$. What is the rate constant at $75.0^{\circ} \mathrm{C}$?
10. Two first-order reactions have the same rate constant at $30^{\circ} \mathrm{C}$. Reaction A has an activation energy of $34.50 \mathrm{~kJ} / \mathrm{mol}$. Reaction B has an activation energy of $27.20 \mathrm{~kJ} / \mathrm{mol}$. Calculate the ratio of rate constants, $\mathrm{k}_{\mathrm{A}} / \mathrm{k}_{\mathrm{B}}$ at $60^{\circ} \mathrm{C}$.

The reaction of nitrogen monoxide with oxygen to give nitrogen dioxide is an important process in the formation of brown smog:

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

Experiments show that this reaction is third order overall. The following mechanism has been proposed:

$$
\begin{array}{llll}
\text { step 1 } & \mathrm{NO}+\mathrm{NO} & \rightarrow & \mathrm{~N}_{2} \mathrm{O}_{2} \\
\text { step 2 } & \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} & \rightarrow & \mathrm{NO}_{2}+\mathrm{NO}_{2}
\end{array}
$$

11. If the first step is rate-determining, then what is the rate law for the overall reaction?
12. If the second step is rate-determining, then what is the rate law for the overall reaction?
13. Is either of these consistent with the experimental observations?

The following mechanism has been proposed for a different reaction that converts nitrogen monoxide to nitrogen dioxide during smog formation:

step 1	$\mathrm{CO}+\mathrm{OH}$	\rightarrow
$\mathrm{CO}_{2}+\mathrm{H}$		
step 2	$\mathrm{H}+\mathrm{O}_{2}$	\rightarrow
step 3	$\mathrm{HOO}+\mathrm{NO}$	\rightarrow
$\mathrm{OH}+\mathrm{NO}_{2}$		

14. Write the overall reaction.
15. List any reaction intermediates.
16. List any catalysts.
17. If the first step is rate-determining, then what is the rate law for the overall reaction?
18. If the second step is rate-determining, then what is the rate law for the overall reaction?

A possible mechanism for a gas-phase reaction is:

step 1	2 NO	\rightleftarrows	$\mathrm{N}_{2} \mathrm{O}_{2}$	(fast)
step 2	$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}$	(slow)
step 3	$\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2}$	\rightarrow	$\mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$	(fast)

19. Write the overall reaction.
20. List any reaction intermediates.
21. List any catalysts.
22. What is the rate law for the overall reaction?

The following mechanism has been proposed for a particular reaction:

$$
\begin{array}{lc}
\text { step 1 } & \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \\
\text {step 2 } & \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-}
\end{array} \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-} . \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{I}^{-} .
$$

23. Write the overall reaction.
24. List any reaction intermediates.
25. List any catalysts.
26. What is the rate law for the overall reaction?

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.
Note: Answers obtained graphically should be similar to those listed here, but probably will not be exactly equal.

1.	$79.1 \mathrm{~kJ} / \mathrm{mol}$		1.3		$2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2.	$79 \mathrm{~kJ} / \mathrm{mol}$	11.	rate $=\mathrm{k}[\mathrm{NO}]^{2}$	20.	$\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}_{2}$
3.	Same since data fall very close to line.	12.	rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$	21.	none
4.	$159 \mathrm{~kJ} / \mathrm{mol}$	13.	only the second one	22.	rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
5.	$25 \mathrm{~kJ} / \mathrm{mol}$	14.	$\mathrm{CO}+\mathrm{O}_{2}+\mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}$	23.	$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
6.	$2 \times 10^{-4} \mathrm{~s}^{-1}$	15.	H and HOO	24.	10^{-}
7.	$52 \mathrm{~kJ} / \mathrm{mol}$	16.	OH	25.	I^{-}
8.	8×10^{13} times faster $3 \times 10^{5} \mathrm{~s}^{-1}$	17.	$\begin{aligned} & \text { rate }=\mathrm{k}[\mathrm{CO}][\mathrm{OH}] \\ & \text { rate }=\mathrm{k}[\mathrm{CO}][\mathrm{OH}]\left[\mathrm{O}_{2}\right]\left[\mathrm{CO}_{2}\right]^{-1} \end{aligned}$	26.	rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$

