These problems are intended to supplement the problems in the textbook, not replace them.

Questions

Write balanced nuclear equations for the following.

1. Antimony-124 decays by beta emission.
2. Iodine-117 decays by electron capture.
3. Samarium-146 decays by alpha emission.
4. Titanium-43 decays by positron emission.
5. Krypton-93 decays by beta emission.
6. Palladium- 98 decays by positron emission.
7. Actinium- 225 decays by alpha emission.
8. Polonium-209 decays by electron capture.
9. Bromine-87 decays by neutron emission.
10. Californium-254 undergoes spontaneous fission to molybdenum-106 and another nucleus plus four neutrons.
11. Iron-59 is produced by neutron capture.
12. Technetium-97 is produced by the combination of molybdenum-96 with deuterium (hydrogen-2) and the emission of another particle.
13. Curium- 242 is produced by the combination of plutonium- 239 with another nucleus, with the emission of one neutron.
14. Fermium-256 undergoes spontaneous fission to palladium-115 and xenon-138 plus three additional (identical) particles.
15. Five neutrons are emitted when uranium- 238 combines with another nucleus to produce einsteinium-253.
16. Neptunium-239 is produced by neutron capture, with the emission of a beta particle.
17. The fusion of helium- 3 with helium- 4 creates a new nucleus plus gamma rays.
18. Nitrogen-14 absorbs a neutron, then splits into hydrogen-3 plus another nucleus.

Answer the following questions.

19. The half-life of krypton- 85 is 10.76 years.
a. What percentage of the original sample will remain after 25.0 years?
b. How long will it take for 95.0% of a sample to decay?
20. The half-life of chromium-51 is 27.8 days. How long will it take for a 2.500 g sample to decay to 1.000 g ?
21. The half-life for the beta decay of silicon- 31 is 157 minutes. After 7.86 hours, how many micrograms will remain from a $2.68 \mu \mathrm{~g}$ sample?
22. The half-life of fluorine-18 is 109.8 minutes. How many hours will t take for 85.0% of the sample to decay?
23. A sample that contains manganese- 56 has an activity of 1.00 mCi at one time and an activity of 0.77 mCi 0.97 hour later. What is the half-life of manganese-56?
24. Calculate the half-life for the decay of chlorine- 39 if a 5.00 g sample decays to 0.625 g in 165 minutes.
25. Measurements of the linen wrappings from the Book of Isaiah in the Dead Sea Scrolls suggest that the scrolls contain 79.5% of the carbon-14 expected in living tissue. How old are the scrolls? The half-life of carbon-14 is 5730 years.
26. Indium- 112 has a half-life of 14 minutes. What percentage of the original sample will remain after 2.0 hours?
27. The half-life of tritium (hydrogen-3) is 12.3 years. If 50.0 mg of tritium is released from a nuclear power plant during an accident, what mass of tritium will remain after...
a. 20.0 years
b. $\quad 100.0$ years

For the remaining questions, use these values for constants and atomic masses:

Constants
$\mathrm{N}_{\mathrm{AV}}=6.02214 \times 10^{23}$
$\mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}$
proton $=1.00728 \mathrm{amu}$
neutron $=1.00867 \mathrm{amu}$
electron $=0.00055 \mathrm{amu}$
alpha particle $=4.00151 \mathrm{amu}$

Masses of Some Nuclei (amu)			
${ }_{1}^{1} \mathrm{H}$	1.00728		
	2.01355		

For the following nuclear reactions, calculate (a) the mass change, in grams per mole of reaction, and (b) the energy change, in kJ per mole of reaction
28. ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$
29. ${ }_{12}^{24} \mathrm{Mg}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{12}^{25} \mathrm{Mg}+{ }_{1}^{1} \mathrm{H}$
30. ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{40}^{94} \mathrm{Zr}+{ }_{58}^{140} \mathrm{Ce}+6{ }_{-1}^{0} \beta+2{ }_{0}^{1} \mathrm{n}$

For the following isotopes, calculate (a) the mass defect, in amu per atom, and (b) the nuclear binding energy, in J per nucleon
31. ${ }_{82}^{206} \mathrm{~Pb}$
32. ${ }_{18}^{40} \mathrm{Ar}$
33. ${ }_{26}^{56} \mathrm{Fe}$

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1. ${ }_{51}^{124} \mathrm{Sb} \rightarrow{ }_{-1}^{0} \beta+{ }_{52}^{124} \mathrm{Te}$
2. $\quad{ }_{53}^{117} \mathrm{I}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{52}^{117} \mathrm{Te}$
3. ${ }_{62}^{146} \mathrm{Sm} \rightarrow{ }_{2}^{4} \alpha+{ }_{60}^{142} \mathrm{Nd}$
4. $\quad{ }_{22}^{43} \mathrm{Ti} \rightarrow{ }_{1}^{0} \mathrm{e}+{ }_{21}^{43} \mathrm{Sc}$
5. $\quad{ }_{36}^{93} \mathrm{Kr} \rightarrow{ }_{-1}^{0} \beta+{ }_{37}^{93} \mathrm{Rb}$
6. $\quad{ }_{46}^{98} \mathrm{Pd} \rightarrow{ }_{1}^{0} \mathrm{e}+{ }_{45}^{98} \mathrm{Rh}$
7. ${ }_{89}^{225} \mathrm{Ac} \rightarrow{ }_{2}^{4} \alpha+{ }_{87}^{221} \mathrm{Fr}$
8. $\quad{ }_{84}^{209} \mathrm{Po}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{83}^{209} \mathrm{Bi}$
9. $\quad{ }_{35}^{87} \mathrm{Br} \rightarrow{ }_{0}^{1} \mathrm{n}+{ }_{35}^{86} \mathrm{Br}$
10. ${ }_{98}^{254} \mathrm{Cf} \rightarrow{ }_{42}^{106} \mathrm{Mo}+4{ }_{0}^{1} \mathrm{n}+{ }_{56}^{144} \mathrm{Ba}$
11. ${ }_{0}^{1} \mathrm{n}+{ }_{26}^{58} \mathrm{Fe} \rightarrow{ }_{26}^{59} \mathrm{Fe}$
12. ${ }_{42}^{96} \mathrm{Mo}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{43}^{97} \mathrm{Tc}+{ }_{0}^{1} \mathrm{n}$
13. ${ }_{94}^{239} \mathrm{Pu}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{96}^{242} \mathrm{Cm}+{ }_{0}^{1} \mathrm{n}$
14. ${ }_{100}^{256} \mathrm{Fm} \rightarrow{ }_{46}^{115} \mathrm{Pd}+{ }_{54}^{138} \mathrm{Xe}+3{ }_{0}^{1} \mathrm{n}$
15. ${ }_{92}^{238} U+{ }_{7}^{20} N \rightarrow{ }_{99}^{253} E s+5{ }_{0}^{1} n$
16. ${ }_{0}^{1} \mathrm{n}+{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{93}^{239} \mathrm{~Np}+{ }_{-1}^{0} \beta$
17. ${ }_{2}^{3} \mathrm{He}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{4}^{7} \mathrm{Be}+{ }_{0}^{0} \gamma$
18. $\quad{ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{6}^{12} \mathrm{C}$
19.

a. 20%
b. 46.6 yr
20. 36.8 days
21. $\quad 0.32 \mu \mathrm{~g}$
22. $300.5 \mathrm{~min}(5.008 \mathrm{~h})$
23. 2.6 h
24. $\quad 55.0 \mathrm{~min}$
25. $1.89 \times 10^{3} \mathrm{yr}$
26. 0.2%
27. a. 16 mg
b. 0.18 mg
28.
a. $-0.01887 \mathrm{~g} / \mathrm{mol}$
b. $-1.696 \times 10^{9} \mathrm{~kJ} / \mathrm{mol}$
29.
a. $-0.00547 \mathrm{~g} / \mathrm{mol}$
b. $-4.92 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$
30.
a. $-0.22348 \mathrm{~g} / \mathrm{mol}$
b. $-2.0085 \times 10^{10} \mathrm{~kJ} / \mathrm{mol}$
31. a. $1.74258 \mathrm{amu} /$ atom
b. $1.26245 \times 10^{-12} \mathrm{~J} /$ nucleon
32. a. $0.36927 \mathrm{amu} /$ atom
b. $1.3778 \times 10^{-12} \mathrm{~J} /$ nucleon
33. a. $0.52870 \mathrm{amu} /$ atom
b. $1.4090 \times 10^{-12} \mathrm{~J} /$ nucleon

