17. NUCLEAR CHEMISTRY

These problems are intended to *supplement* the problems in the textbook, not *replace* them.

Questions

Write balanced nuclear equations for the following.

- 1. Antimony-124 decays by beta emission.
- 2. Iodine-117 decays by electron capture.
- 3. Samarium-146 decays by alpha emission.
- 4. Titanium-43 decays by positron emission.
- 5. Krypton-93 decays by beta emission.
- 6. Palladium-98 decays by positron emission.
- 7. Actinium-225 decays by alpha emission.
- 8. Polonium-209 decays by electron capture.
- 9. Bromine-87 decays by neutron emission.
- 10. Californium-254 undergoes spontaneous fission to molybdenum-106 and another nucleus plus four neutrons.
- 11. Iron-59 is produced by neutron capture.
- 12. Technetium-97 is produced by the combination of molybdenum-96 with deuterium (hydrogen-2) and the emission of another particle.
- 13. Curium-242 is produced by the combination of plutonium-239 with another nucleus, with the emission of one neutron.
- 14. Fermium-256 undergoes spontaneous fission to palladium-115 and xenon-138 plus three additional (identical) particles.
- 15. Five neutrons are emitted when uranium-238 combines with another nucleus to produce einsteinium-253.
- 16. Neptunium-239 is produced by neutron capture, with the emission of a beta particle.
- 17. The fusion of helium-3 with helium-4 creates a new nucleus plus gamma rays.
- 18. Nitrogen-14 absorbs a neutron, then splits into hydrogen-3 plus another nucleus.

Answer the following questions.

- 19. The half-life of krypton-85 is 10.76 years.
 - a. What percentage of the original sample will remain after 25.0 years?
 - b. How long will it take for 95.0% of a sample to decay?

- 20. The half-life of chromium-51 is 27.8 days. How long will it take for a 2.500 g sample to decay to 1.000 g?
- 21. The half-life for the beta decay of silicon-31 is 157 minutes. After 7.86 hours, how many micrograms will remain from a 2.68 µg sample?
- 22. The half-life of fluorine-18 is 109.8 minutes. How many hours will t take for 85.0% of the sample to decay?
- 23. A sample that contains manganese-56 has an activity of 1.00 mCi at one time and an activity of 0.77 mCi 0.97 hour later. What is the half-life of manganese-56?
- 24. Calculate the half-life for the decay of chlorine-39 if a 5.00 g sample decays to 0.625 g in 165 minutes.
- 25. Measurements of the linen wrappings from the Book of Isaiah in the Dead Sea Scrolls suggest that the scrolls contain 79.5% of the carbon-14 expected in living tissue. How old are the scrolls? The half-life of carbon-14 is 5730 years.
- 26. Indium-112 has a half-life of 14 minutes. What percentage of the original sample will remain after 2.0 hours?
- 27. The half-life of tritium (hydrogen-3) is 12.3 years. If 50.0 mg of tritium is released from a nuclear power plant during an accident, what mass of tritium will remain after...
 - a. 20.0 years b. 100.0 years

For the remaining questions, use these values for constants and atomic masses:

Constants	Masses of Some Nuclei (amu)				
$N_{AV} = 6.02214 \times 10^{23}$	$^{1}_{1}\mathrm{H}$	1.00728		$^{40}_{18}{ m Ar}$	39.95251
$c = 2.99792 \times 10^8 \text{ m/s}$	${}^{2}_{1}H$	2.01355		⁵⁶ ₂₆ Fe	55.92068
proton = 1.00728 amu	${}^{3}_{1}H$	3.01550		$^{94}_{40}{ m Zr}$	93.88438
neutron = 1.00867 amu	⁴ ₂ He	4.00151		¹⁴⁰ 58 Ce	139.87362
electron = 0.00055 amu	$^{24}_{12}{ m Mg}$	23.97846		²⁰⁶ 82 Pb	205.92946
alpha particle = 4.00151 amu	$^{25}_{12}{ m Mg}$	24.97926		²³⁵ ₉₂ U	234.99345

For the following nuclear reactions, calculate (a) the mass change, in grams per mole of reaction, and (b) the energy change, in kJ per mole of reaction

- 28. ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$
- 29. $^{24}_{12}Mg + ^{2}_{1}H \rightarrow ^{25}_{12}Mg + ^{1}_{1}H$

$$30. \quad {}^{235}_{92}\text{U} \ + \ {}^{1}_{0}n \ \rightarrow \ {}^{94}_{40}\text{Zr} \ + \ {}^{140}_{58}\text{Ce} \ + \ 6 \ {}^{0}_{-1}\beta \ + \ 2 \ {}^{1}_{0}n$$

For the following isotopes, calculate (a) the mass defect, in amu per atom, and (b) the nuclear binding energy, in J per nucleon

31. $\frac{206}{82}$ Pb 32. $\frac{40}{18}$ Ar 33. $\frac{56}{26}$ Fe

Answers

If you cannot figure out how to get the correct answer, go to your instructor, Science Tutoring Center, etc.

1.	$^{124}_{51}\text{Sb} \rightarrow ^{0}_{-1}\beta$ + $^{124}_{52}\text{Te}$	17.	${}^3_2\text{He}$ + ${}^4_2\text{He} \rightarrow {}^7_4\text{Be}$ + ${}^0_0\gamma$				
2.	$^{117}_{53}$ I + $^{0}_{-1}$ e $\rightarrow ~^{117}_{52}$ Te	18.	$^{14}_{7}\text{N}$ + $^{1}_{0}\text{n}$ \rightarrow $^{3}_{1}\text{H}$ + $^{12}_{6}\text{C}$				
3.	$^{146}_{62}$ Sm $\rightarrow ^4_2 \alpha + ^{142}_{60}$ Nd	19.	a. 20% b. 46.6 yr				
4.	$^{43}_{22}$ Ti $\rightarrow {}^{0}_{1}$ e + $^{43}_{21}$ Sc	20.	36.8 days				
5.			0.32 μg				
5.	5. 36_{36} Kr $\rightarrow -1\beta$ + 37_{37} Rb	22.	300.5 min (5.008 h)				
6.	$^{98}_{46}$ Pd $\rightarrow ^{0}_{1}$ e + $^{98}_{45}$ Rh	23.	2.6 h				
7.	$^{225}_{89}$ Ac $\rightarrow ^{4}_{2} \alpha + ^{221}_{87}$ Fr	24.	55.0 min				
8.	$^{209}_{84}$ Po + $^{0}_{-1}$ e $\rightarrow ^{209}_{83}$ Bi	25.	$1.89 \times 10^{3} \text{yr}$				
9.	${}^{87}_{35}\text{Br} \rightarrow {}^{1}_{0}\text{n} + {}^{86}_{35}\text{Br}$	26.	0.2%				
		27.	a. 16 mg b. 0.18 mg				
10.	$^{254}_{98}$ Cf $\rightarrow ^{106}_{42}$ Mo + 4 $^{1}_{0}$ n + $^{144}_{56}$ Ba	28.	a0.01887 g/mol b1.696×10 ⁹ kJ/mol				
11.	1_0 n + ${}^{58}_{26}$ Fe $\rightarrow {}^{59}_{26}$ Fe	29.	a0.00547 g/mol b4.92×10 ⁸ kJ/mol				
12.	$^{96}_{42}$ Mo + $^{2}_{1}$ H $\rightarrow ^{97}_{43}$ Tc + $^{1}_{0}$ n	30.	a0.22348 g/mol b2.0085×10 ¹⁰ kJ/mol				
13.	$^{239}_{94}$ Pu + $^{4}_{2}$ He $\rightarrow ^{242}_{96}$ Cm + $^{1}_{0}$ n	31.	a. 1.74258 amu/atom b. 1.26245×10 ⁻¹² J/nucleon				
14.	$^{256}_{100} \text{Fm} \rightarrow ^{115}_{46} \text{Pd} + ^{138}_{54} \text{Xe} + 3 ^{1}_{0} \text{n}$	32.	a. 0.36927 amu/atom b. 1.3778×10 ⁻¹² J/nucleon				
15.	${}^{238}_{92}\text{U} + {}^{20}_{7}\text{N} \rightarrow {}^{253}_{99}\text{Es} + 5 {}^{1}_{0}\text{n}$	33.	a. 0.52870 amu/atom b. 1.4090×10 ⁻¹² J/nucleon				
16.	${}^{1}_{0}n + {}^{238}_{92}U \rightarrow {}^{239}_{93}Np + {}^{0}_{-1}\beta$						