MAT 012 Review \& Lecture Notes: ch 8, supplement A, Linear Functions
START OF REVIEW (not covered during lecture)
This is just a brief review of skills you already need to be familiar with. If you do not recall linear equations / linear functions as used in the examples below, work through chapter 3.2-3.5 (pages 184-226) in your book.

```
Linear Functions are of the form \(\quad \boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\mathbf{b}\) (slope-intercept form) or \(\mathbf{A x}+\mathbf{B y}=\mathbf{C}\) (standard form)
```

Note: In standard form B and C are integers and A is a non-negative integer.
Example: $6 x+3 y=1$ is a linear equation in standard form.
Bring this linear equation in slope-intercept form and express it in function notation.

The graph of a linear function is $\qquad$
Note: Functions that are linear only include $x$, but not terms like $x^{2}, x^{3}, x^{4}, \frac{1}{x}, \frac{1}{x^{2}}, \sqrt{x}, \sqrt[3]{x}, \ldots$ etc.
To find the slope of a line, use the slope formula
The slope is defined as $m=\frac{\text { rise }}{\text { run }}$ and thus calculated $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
The slope of a line is the incline, it expresses how steep the line is and whether it is rising or falling. A negative slope describes a decreasing line, a positive slope an increasing line.

Example: Calculate the slope of the line passing through $(-1,4),(3,2)$

Example: Calculate the slope of the line passing through $(-7,-2),(-2,1)$

## Graphing linear equations

To graph a line, we can use two given points, but usually we use the slope and the $y$-intercept:

| Slope-Intercept Form $\quad y=m \boldsymbol{x}+\boldsymbol{b}$ |
| :--- |
| $m=$ slope of the line |
| $b=y$-intercept: where the line intersects the $y$-axis |

MAT 012 Review \& Lecture Notes: ch 8, supplement A, Linear Functions

Example: Given $y=3 x-5$
a) State the slope:
(label it with the variable name)
b) State the $\boldsymbol{y}$-intercept:
(label it with the variable name)
same as
(state the point)
c) graph


## Graphs that pass through the origin

Example: $\quad y=\frac{2}{7} x$


If you want to graph an equation given in standard form, convert the equation to slope intercept form (i.e. solve for $y$ ), then graph.

Example: Given $3 x+5 y=20$
Bring in slope-intercept form, then graph.


Example: $\quad y=-4 x$


# MAT 012 Review \& Lecture Notes: ch 8, supplement A, Linear Functions 

Find the equation of the line, given the slope and one point
Example: Find the slope-intercept equation of the line with a slope of 2 through the point ( $-1,3$ ).

Don't forget to state the equation:

## Find the equation of the line, given two points

Example: A line is passing through the points $(-3,-6)$ and (9, -2 ).
a) Calculate the slope of the line.
b) Find the equation of the line (Using Algebra)

Don't forget to state the equation: $\square$

## END OF REVIEW

(Solutions to this Review will be posted on http://ola4.aacc.edu/sclayton1 .)

## Lecture Notes: ch 8, supplement A, Linear Functions

If you want to graph an equation given in standard form, convert the equation to slope intercept form (i.e. solve for $y$ ), then graph.

Example: $-2 x+3 y=-9$
Bring in slope-intercept form, then graph.

Example: $\quad-4 x-2 y=-2$
Bring in slope-intercept form, then graph.



## Intercepts

Sometimes, we pick the $x$-intercept and the $y$-intercept as two points from which to graph the line:
$x$-intercept: Let $y=0$, solve for $x$.
$\boldsymbol{y}$-intercept: Let $\boldsymbol{x}=\mathbf{0}$, solve for $\boldsymbol{y}$.
Example: Find the intercepts and graph $2 y-x=6$
$x$-intercept: (give the point)
$y$-intercept:
(give the point)


MAT 012 Review \& Lecture Notes: ch 8, supplement A, Linear Functions Special Cases:
$x=$ number
Example: $\quad x=-3$


This graph is a $\qquad$ line. This graph is a $\qquad$ line.

Find the equation of the line, given two points (slope intercept form)
Example: A line is passing through the points $(-3,5)$ and ( 3,1 ).
a) Calculate the slope of the line.
b) Find the equation of the line (Using Algebra)

Don't forget to state the equation: $\square$

## MAT 012 Review \& Lecture Notes: ch 8, supplement A, Linear Functions

 The point-slope form of a line

In this figure: $\frac{\text { rise }}{\text { run }}=\frac{y-y_{1}}{x-x_{1}}=m$
If we multiply the equation

$$
\frac{y-y_{1}}{x-x_{1}}=m
$$

by $\left(x-x_{1}\right)$ on both sides, we obtain the point-slope form of the line $y-y_{1}=m\left(x-x_{1}\right)$

Point-Slope Form of a line: $y-y_{1}=m\left(x-x_{1}\right)$

The point-slope form of the line can be set-up as long as $m$ is known or can be found and one point on the line is known.
The point-slope form of the line can be simplified into the slope-intercept form $y=m x+b$.
(Distribute the $m$ on the right hand side and bring the constant over to the other side.)
Example: A line is going through the points $(-4,9)$ and $(-1,-3)$.
a) Caluclate the slope of the line.
b) Set up an equation of the line in point-slope form
c) Bring the equation in slope intercept form.

