The **absolute value** produces **positive** outputs:

|-6| =We know $\left|\frac{2}{3}\right| =$ |0| =

The definition of the absolute value :	$ x = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}$
--	--

The absolute value function:

Absolute Value Equations:

Give all solutions for which |x| = 2: Equation(s):

Give all solutions for which |x| = 0: Equation(s):

Give all solutions for which $|x| = \frac{1}{5}$: Equation(s):

Give all solutions for which |x| = -3: Equation(s):

MAT 012 Lec. Notes: ch 9.2 & 9.3, Absolute Value Equations and Inequalities The absolute value principle for equations:

Example: Solve |2x-3| = 5

Example: Solve |3x+10| = -2

Example: Solve $\left|\frac{2x-1}{3}\right| = 5$

Remember: If the absolute value expression is not isolated on one side, first isolate it and then judge the case

Example: Solve 5-2|3x-4| = -5 \checkmark <u>Note</u>: Do not claim "no solutions" since this is only true for isolated absolute values...

Example: Solve |5x-7|-3=10

<u>Note</u>: We are skipping the problems of the type $|An \exp (x) + x| = |An \exp (x) + x|$

Absolute Value Inequalities:

Example: $|x| \leq 3$

List of selected numbers that work: e.g.

List of selected numbers that work: e.g.

In general: Again, isolate the absolute value expression, then judge the type.

"Less than" type:	An expression with $x < p$ is positive
Solutions set-up:	-p < The expression with $x < p$
	p is positive
"Greater than" type:	An expression with $x > p^{-1}$
Solutions set-up:	The expression with $x < -p$, or The expression with $x > p$

<u>Note</u>: The "less than" type is also applied for | An expression with $x | \le p$. Then the solution setup uses "less than or equal to" signs.

<u>Note</u>: The "greater than" type is also applied for | An expression with $x | \ge p$. Then the solution set-up uses "less than or equal to" and "greater than or equal to" respectively.

<u>Note</u>: In addition to the types mentioned above, there are some special cases, which are discussed at the end of this handout.

Example: Solve, graph on the number line and give in interval notation: $|x+4| \le 1$

Interval notation:

Example: Solve, graph on the number line and give in interval notation:

|3x-4| > 8

Interval notation:

Example: Solve, graph on the number line and give in interval notation: 30-4|x+2| > 12

Interval notation:

►

Example: Solve, graph on the number line and give in interval notation:

 $|4x+10|-7 \ge 11$

Interval notation:

Special cases of Absolute Value Inequalities *Example*: |x| > -2

Example: $|x| \leq -6$

ral:p is positive, so -p is negativeAn expression with $x | > -p^4$ In general:

Is always correct, since a positive number is always greater than a negative number.

Solutions: All real numbers. p is positive, so -p is negative An expression with $x | < -p^4$

Is never correct, since a positive number can never be smaller than a negative one. Solutions: No solutions.

Solve |7 - 2x| < -4Example:

Example: Solve $|x-4|+5 \ge 2$