MAT 012 Lec. Notes: ch 9.2 \& 9.3, Absolute Value Equations and Inequalities
The absolute value produces positive outputs:
We know

$$
\begin{aligned}
& |-6|= \\
& \left|\frac{2}{3}\right|= \\
& |0|=
\end{aligned}
$$

The definition of the absolute value: $\quad|x|=\left\{\begin{aligned} x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{aligned}\right.$

The absolute value function:

Absolute Value Equations:

Give all solutions for which $|x|=2$: Equation(s):

Give all solutions for which $|x|=0$: Equation(s):

Give all solutions for which $|x|=\frac{1}{5}$: Equation(s):

Give all solutions for which $|x|=-3$: Equation(s):

MAT 012 Lec. Notes: ch 9.2 \& 9.3, Absolute Value Equations and Inequalities

The absolute value principle for equations:

- First, isolate the absolute value expression
- Then, judge the case.

Case 1:

Example: Solve $|2 x-3|=5$

Example: Solve $|3 x+10|=-2$

Example: Solve $\left|\frac{2 x-1}{3}\right|=5$

Remember: If the absolute value expression is not isolated on one side, first isolate it and then judge the case

MAT 012 Lec. Notes: ch $9.2 \& 9.3$, Absolute Value Equations and Inequalities
Example: Solve $5-2|3 x-4|=-5 \longleftarrow$ Note: Do not claim "no solutions" since this is only true for isolated absolute values...

Example: Solve $|5 x-7|-3=10$

Note: We are skipping the problems of the type \mid An expression with $x|=|$ An expression with $x \mid$

Absolute Value Inequalities:

Example: $|x| \leq 3$
List of selected numbers that work: e.g.

MAT 012 Lec. Notes: ch 9.2 \& 9.3, Absolute Value Equations and Inequalities
Example: $|x|>5$
List of selected numbers that work: e.g.

In general: Again, isolate the absolute value expression, then judge the type.

| "Less than" type: | \mid An expression with $x \mid<p$ |
| :--- | :---: | pis positive

Note: The "less than" type is also applied for \mid Anexpression with $x \mid \leq p$. Then the solution setup uses "less than or equal to" signs.
Note: The "greater than" type is also applied for \mid An expression with $x \mid \geq p$. Then the solution set-up uses "less than or equal to" and "greater than or equal to" respectively.

Note: In addition to the types mentioned above, there are some special cases, which are discussed at the end of this handout.

Example: Solve, graph on the number line and give in interval notation:

$$
|x+4| \leq 1
$$

MAT 012 Lec. Notes: ch 9.2 \& 9.3, Absolute Value Equations and Inequalities

Example: Solve, graph on the number line and give in interval notation:

$$
|3 x-4|>8
$$

Example: Solve, graph on the number line and give in interval notation:

$$
30-4|x+2|>12
$$

MAT 012 Lec. Notes: ch 9.2 \& 9.3, Absolute Value Equations and Inequalities

Example: Solve, graph on the number line and give in interval notation:

$$
|4 x+10|-7 \geq 11
$$

Special cases of Absolute Value Inequalities
Example: $|x|>-2$

Example: $|x| \leq-6$

In general:
p is positive, so $-p$ is negative
\mid An expression with $x \mid>-p^{4}$
Is always correct, since a positive number is always greater than a negative number.
Solutions: All real numbers.
\mid An expression with $x \mid<-p$. p is positive, so $-p$ is negative
\mid An expression with $x \mid<-p$
Is never correct, since a positive number can never be smaller than a negative one.
Solutions: No solutions.
Example: \quad Solve $\quad|7-2 x|<-4$

Example: \quad Solve $\quad|x-4|+5 \geq 2$

