MAT 012

Since the exponential function is one-to-one (it passes the horizontal line test), it has an inverse function. This inverse is the logarithmic function.

Solving an exponential function for the exponent produces the logarithm.
$\log _{b} c=x \quad$ is equivalent to $\quad b^{x}=c$
When working with logarithms, rewrite them in exponential form, then evaluate.
Examples:

1) Evaluate: $\log _{2} 16$
2) Evaluate: $\log _{2} \frac{1}{4}$
3) Evaluate: $\log _{10} 10,000$
4) Evaluate: $\log _{2}(-4)$
5) Find $x: \quad \log _{2} x=-3$
6) Find $x: \quad \log _{x} 125=3$
7) Find $x: \quad \log _{10} x=5$
8) Find x : $\log _{7} x=0$
9) Evaluate: $\log _{10} 0.001$
10) Evaluate: $\log _{5} 5$
11) Find $x: \quad \log _{4} x=1$
12) Find $x: \quad \log _{x} 32=5$
13) Evaluate $\log _{10} \frac{1}{1000}$
14) Find x : $\quad \log _{9} x=\frac{1}{2}$
15) Find x : $\quad \log _{10} x=-2$
16) Evaluate: $\log _{6} 1$
17) Find $x: \quad \log _{x} \frac{1}{49}=-2$
18) Evaluate: $\log _{\frac{1}{4}} 64$
19) Find $x: \quad \log _{\frac{1}{3}} x=-4$
20) Evaluate: $\log _{8} \sqrt{8}$
21) Find $x: \quad \log _{x} \frac{81}{16}=-4$

Often base 10 is implied. By convention: $\log _{10} x$ is written as $\log x$.
If the so called Euler number $\boldsymbol{e}=\mathbf{2 . 7 1 8 2 8 1 8 2 8 4} \ldots$ (pronounce "Oiler number") is used as a base in a logarithm, then we call this logarithm base e the natural logarithm. The convention for this logarithm is that $\quad \log _{e} x$ is written as $\ln x$.

Logarithms on the calculator
Base 10 LOG key: to evaluate $\log _{10} 10,000$, type $\log (10,000)=$
to evaluate $\quad \log _{10} 0.00001$, type $\log (0.00001)=$

Base \boldsymbol{e} LN key to evaluate $\ln 7$ type $\ln (7)$ for a decimal approximation. If you need it exact, leave $\ln 7$

Evaluating logarithms other than base 10 or base e
A useful relationship called the base change formula: $\log _{b} c=\frac{\log _{10} c}{\log _{10} b}$ or alternatively $\frac{\ln c}{\ln b}$
Example:
22) Evaluate: $\quad \log _{2} 128$
23) Evaluate: $\quad \log _{2}(-2)$
24) Evaluate: \quad Give an exact answer: $\quad \log _{\frac{1}{2}} \sqrt[3]{2}$

Graphing logarithms other than base 10 or base \boldsymbol{e} with the graphing calculator

To graph logarithms that are not base 10 or base e, use the same base change formula as above:
25) Graph on a graphing calculator: $\quad f(x)=-\log _{3} x$
26) Graph on a graphing calculator:

$$
g(x)=\log _{\frac{1}{2}}(x+4)
$$

