MAT 012 Lecture Notes, Ch 2.5 & 7.5 (Part 2): Formulas Solving a Formula for a Specified Variable

Ex: Given the formula for velocity $v = v_0 + at$ solve for *a* (*a*: acceleration; v_0 : initial velocity)

Ex: Given the formula for the volume of a cone $V = \frac{1}{3} \pi r^2 h$ solve for *h* (*r*: radius of the base *h*: height of the cone)

Ex: Given the formula for speed (rate of travel) $r = \frac{d}{t}$ solve for t (d: distance; t: time)

Ex: Given the formula for the forces on a beam
$$W = \frac{L(dL+2P)}{8}$$
 solve for *P*

MAT 012 Lecture Notes, Ch 2.5 & 7.5 (Part 2): Formulas

Ex: Given the formula $\frac{5x+h}{a} = \frac{c}{t}$ solve for x

Ex: Given the formula $\frac{1}{v} - \frac{1}{3} = \frac{1}{x}$ solve for x

MAT 012 Lecture Notes, Ch 2.5 & 7.5 (Part 2): Formulas

Extra Practice: Solve the following equations (formulas) for the specified variable:

1)	$E = mc^2$		for <i>m</i>	(formula in physics)
2)	$\frac{x-b}{a} = 9$		for <i>x</i>	
3)	3r + y = 8s		for <i>r</i>	
4)	$A = \frac{Rt}{PV}$		for <i>t</i>	(formula in jet engine design)
5)	$W = T(S_1 - S_2) -$	Q	for S_1	(formula in refrigeration)
6)	y = mx + b		for <i>m</i>	(Equation of a line)
7)	$A = \frac{1}{2}bh$		for <i>h</i>	(Area of a triangle)
8)	$P = s_1 + s_2 + s_3$		for s_3	
9)	$F = \frac{9}{5}C + 32$		for C	(Conversion from degrees Celsius to Fahrenheit)
10)	$S = 2\pi r h + 2\pi r$	2	for <i>h</i>	(Surface area of a cylinder)
11)	$I = \frac{nE}{nr+R}$		for <i>R</i> [<u>Note</u> : <i>r</i>	and <i>R</i> are two different variables]
12)	A = P(1 + nr)	for <i>n</i>	(Form	ula in finance; <i>r</i> stands for the APR as a decimal)
13)	$\frac{3x-t}{a} = \frac{p}{c}$	for <i>x</i>		
14)	$S = \frac{a}{1-r}$	for <i>r</i>		

15) After *t* seconds, a stone thrown upward with a velocity of *v* meters/second and with an acceleration due to gravity will be *s* meters above the ground, where $s = vt - \frac{1}{2}at^2$. Solve for *v*.

MAT 012 Lecture Notes, Ch 2.5 & 7.5 (Part 2): Formulas ANSWERS for Extra Practice

1. $m = \frac{E}{c^2}$ 2. x = 9a + b3. $r = \frac{8s - y}{2}$ same as $r = \frac{8}{3}s - \frac{1}{3}y$ 4. $t = \frac{APV}{P}$ same as $t = \frac{PVA}{P}$ 5. $S_1 = \frac{W + TS_2 + Q}{T}$ same as $S_1 = \frac{W + Q}{T} + S_2$ 6. $m = \frac{y-b}{x}$ 7. $h = \frac{2A}{b}$ same as $h = \frac{A}{\frac{1}{a}b}$ 8. $s_3 = P - s_1 - s_2$ 9. $C = \frac{5}{9}(F - 32)$ same as $C = \frac{F - 32}{9}$ same as $C = \frac{5F - 160}{9}$ same as $C = \frac{5}{9}F - \frac{160}{9}$ 10. $h = \frac{S - 2\pi r^2}{2\pi r}$ same as $h = \frac{S}{2\pi r} - r$ 11. $R = \frac{nE - Inr}{I}$ same as $R = \frac{nE}{I} - nr$ 12. $n = \frac{A - P}{Pr}$ same as $n = \frac{A}{Pr} - \frac{1}{r}$ same as $n = \frac{\frac{A}{P} - 1}{r}$ 13. $x = \frac{ap+ct}{3c}$ same as $x = \frac{ap}{3c} + \frac{t}{3}$ same as $x = \frac{\frac{ap}{c} + t}{3}$ 14. $r = \frac{S-a}{S}$ same as $r = 1 - \frac{a}{S}$ same as $r = \frac{a-S}{-S}$ same as $r = \frac{\frac{a}{S}-1}{\frac{1}{S}}$ 15. $v = \frac{s + \frac{1}{2}at^2}{\frac{1}{2}}$ same as $v = \frac{s}{t} + \frac{1}{2}at$ same as $v = \frac{s}{t} + \frac{at}{2}$