You may want to use one of these: $\quad A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)$

$$
A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
$$

1. Simplify: $7 a^{3}+12 a-8-\left(6 a^{4}-a^{3}+8 a-10\right)=$
2. Factor out the greatest common factor. [Write the entire expression, not just the GCF.] $12 x^{9}-60 x^{7}-28 x^{6}+4 x^{5}=$
3. Factor: $2 x^{2}-17 x+21$
4. Factor: $5 x^{3}+40$
5. Factor: $4 x^{4}-8 x^{2}-5$
6. Solve: $3 x^{2}+4 x=4$
7. Solve: $3 x^{4}+33 x^{3}+84 x^{2}=0$
8. Factor, then divide and simplify $\frac{5 x+15}{x^{2}-3 x-4} \div \frac{x^{2}+2 x-3}{x^{2}-5 x+4}$
9. Given $\frac{x^{2}}{x-4}-\frac{x+12}{x-4}$
a) Give the value of x for which the expression is not defined.
b) Perform the operation and simplify. [Hint: After combining, the correct version has a numerator which factors. Simplify the answer.]
10. Given $\frac{x}{x-5}+\frac{50}{x^{2}-25}-\frac{x}{x+5}$
a) Rewrite the entire expression, but factor the one denominator, which needs to be factored.
b) Give the values of x for which the expression is not defined.
c) Give the LCD
d) Perform the operations and simplify. [Hint: After combining, the correct version has a numerator which factors. Simplify the answer.]
11. Given $\frac{4}{x^{2}+3 x-4}-\frac{3}{x^{2}+2 x-8}$.
a) Rewrite the entire expression with factored denominators.
b) Give the values of x for which the expression is not defined.
c) Give the LCD
d) Perform the operation and simplify.
12. Factor, then simplify: $\frac{10 x^{3}-15 x^{2}}{2 x^{2}+5 x-12}$
13. Given $\frac{5}{2 x-4}=\frac{2}{x-1}$
a) Give the values of x for which the equation is not defined.
b) Solve the equation. [Don't forget to check if your answer "candidates" are actual answers]
c) State the answers(s).
14. Given $\quad \frac{a t}{2}-3 y=h \quad$ solve for t
15. Given $\frac{5}{x-3}-\frac{30}{x^{2}-9}=1$
a) Rewrite the entire equation, but factor the one denominator, which needs to be factored.
b) Give the values of x for which the equation is not defined.
c) Give the LCD
d) Solve the equation. [Don't forget to check if your answer "candidates" are actual answers]
e) State the answer(s)
16. Given $\frac{2}{x+3}-\frac{5}{x+1}=\frac{3 x+5}{x^{2}+4 x+3}$
a) Rewrite the entire equation, but factor the one denominator, which needs to be factored.
b) Give the values of x for which the equation is not defined.
c) Give the LCD
d) Solve the equation. [Don't forget to check if your answer "candidates" are actual answers]
e) State the answer(s).
17. Give the LCD for the following expression. (Since the numerators are not important, space holders are put in their places.)

$$
\frac{\# \# \# \# \#}{10 x^{3}(x-6)(x+2)}+\frac{\square \square \square}{35 x^{2}(x+2)} \quad \text { LCD: }
$$

18. Given $\frac{2 k-x}{3}=\frac{1}{k} \quad$ solve for x

NOTE: This practice test is longer than Test 1 will be.

Worked out solutions are posted on http://ola4.aacc.edu/sclayton1.

