9. Let $f(x) = x^2 + 5$ and g(x) = 2x - 6

a) Give
$$\left(\frac{f}{g}\right)(x) = \frac{\int (x)}{g(x)} = \frac{\chi^2 + 5}{2x - 6}$$
 Same as $\frac{\chi^2 + 5}{2(x - 3)}$

b) What is the domain of $\left(\frac{f}{g}\right)(x)$ found above? $2x-6 \neq 0$ $x \neq 3$ $x \neq 3$

$$\begin{array}{c}
2x - 6 & \neq 0 \\
+ 6 & + 6
\end{array}$$

$$\begin{array}{c}
2x + 6 \\
\hline
2x + 6
\end{array}$$
The domain of the function $h(x) = 3$

10. Give the domain of the function $h(x) = 3x^2 - 4x + 1$

- 11. Many houses in the Annapolis area have wells and are not connected to the city water system. A well drilling company charges its customers a flat fee as well as a fee based on the number of feet it digs into the ground. The company charges \$3040 for a well 60 ft deep and \$7790 for a well 250ft deep. A linear function can be used to model the situation.
 - a. What does x stand for?

b. What does y stand for?

c. Use Algebra to find the **slope** of the line that can be used to model the situation. (60, 3040) (250, 7790)

$$M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7790 - 3040}{250 - 60} = \frac{4750}{190} = 25$$

d. Set up the equation of the line modeling the cost of a drill in point-slope form.
$$y-y_1=m(x-x_1)$$
 point $(60, 30, 40)$ $y-y_1=25(x-x_1)$ $y-3040=25(x-60)$

Bring your equation from part (d) into slope-intercept form.

$$y - 3040 = 25(x - 60)$$

$$y - 3040 = 25x - 1500$$

$$+ 3040$$

$$y = 25x + 1540$$