**
Use complex numbers as appropriate. (All expressions are defined.)

1. Simplify $\sqrt{-144}=$
2. Add and simplify: $(12+5 i)+(3-i)$
3. Subtract and simplify: $(7-2 i)-(10-9 i)$
4. Multiply and simplify: $(3-4 i)(2+3 i)$
5. Simplify: Give the answer in the form $a+b i$.
$\frac{2+7 i}{6 i}$
6. Simplify: Give the answer in the form $a+b i$.

$$
\frac{3-4 i}{2+5 i}
$$

7. Rationalize the denominator $\frac{9 \sqrt{7}}{2 \sqrt{6}}$ (Make sure to give the answer in lowest terms.)
8. Rationalize the denominator

$$
\frac{\sqrt{3}-\sqrt{5}}{\sqrt{5}-\sqrt{2}}
$$

9. Rationalize the denominator

$$
\frac{4 \sqrt{6}-2 \sqrt{3}}{2 \sqrt{5}+3 \sqrt{2}}
$$

10. Use the quadratic formula to solve:

$$
3 x^{2}=7 x-1
$$

(Give an exact answer, not a decimal approximation.)
11. Use the quadratic formula to solve:

$$
5 x^{2}-2=4 x
$$

(Give an approximate answer rounded to two decimal places)
12. a) Find the domain for the function $f(x)=\sqrt{2 x+6}$
b) Solve $1+\sqrt{2 x+6}=x$
c) Show the "checks" to identify extraneous solutions.
d) List the solution(s).
13. Let $f(x)=-2 x^{2}-12 x-10$
a) Calculate the vertex (Give the point): Show work. Do NOT just find on your calculator.
b) Give the equation of the axis of symmetry:
c) Give the vertex-form of the function:
d) Give the y-intercept (give the point):
e) Calculate the x-intercepts (Give the points): Show work!
f) Graph as accurately as possible:

Use at least 5 key-points.
(Showing algebraic work on this part is optional.)

g) This parabola opens \qquad . This vertex is a \qquad .
To obtain this function, x^{2} is \qquad by the "stretch-factor" \qquad .

The parabola is shifted \qquad units to the \qquad (horizontal shift).
and \qquad units \qquad (vertical shift).
14. Let $f(x)=\frac{1}{2} x^{2}-x-\frac{3}{2}$
a) Calculate the vertex (Give the point): Show work. Do NOT just find on your calculator.
b) equation of the axis of symmetry:
c) vertex-form:
d) y-intercept (Give the point):
e) x-intercepts (Give the points if they exist):
f) Graph as accurately as possible:

Use at least 5 key-points.
(Showing algebraic work on this part is optional.)

g) This parabola opens \qquad . This vertex is a \qquad .

To obtain this function, x^{2} is \qquad by the "stretch-factor" \qquad .

The parabola is shifted \qquad units to the \qquad (horizontal shift). and \qquad units \qquad (vertical shift)
15. $f(x)=0.6(x-7)^{2}+2$
a) This parabola opens \qquad . This vertex is a \qquad
To obtain this function, x^{2} is \qquad by the "stretch-factor" \qquad .
The parabola is shifted \qquad units to the \qquad (horizontal shift). and \qquad units \qquad (vertical shift).

The vertex of the parabola is the point \qquad .
16. $f(x)=3(x+2)^{2}-14$
a) This parabola opens \qquad . This vertex is a \qquad
To obtain this function, x^{2} is \qquad by the "stretch-factor" \qquad .
The parabola is shifted \qquad units to the \qquad (horizontal shift). and \qquad units \qquad (vertical shift).
The vertex of the parabola is the point \qquad .
b) Convert the given vertex form to the standard form $f(x)=a x^{2}+b x+c$.
17. Let $f(x)=x^{2}-5$ and $g(x)=4 x-2$.
(a) Find $(f \circ g)(x)$ and simplify.

Let $f(x)=x^{2}-5$ and $g(x)=4 x-2$.
(b) Find $(g \circ f)(x)$ and simplify.
18. Let $f(x)=2 x-7$ and $g(x)=\sqrt{3-x}$
a) Give $(f \circ g)(-1)$ and simplify.

Let $f(x)=2 x-7$ and $g(x)=\sqrt{3-x}$
b) Give $(g \circ f)(x)$ and simplify.
19. Find the inverse function of $f(x)=2 x-12$. Use appropriate notation to state the inverse function.

