Tables and Graphs
Here is an expression f.
> f:=x^2-4*x+3;
Make a table of values for f with x from -1 to 5 in steps of 0.5. (The next command loads the package math191 which contains many custom Maple commands that will be used including the one to make a table of values.)
> with(math191):
> valutable(f,x=-1..5,'step'=0.5);
x funct(x) ---------------------------- -1. 8. -.5000000000 5.250000000 0 3. .500000000 1.250000000 1.000000000 0 1.500000000 -.750000000 2.000000000 -1.000000000 2.500000000 -.750000000 3.000000000 0 3.500000000 1.25000000 4.000000000 3. 4.500000000 5.25000000 5.000000000 8.00000000
Now plot the points in this table.
> plotvalutable(f,x=-1..5,'step'=0.5);
Make a graph of f using graph paper.
> gpplot(f,x=-1..5,y=-1..8,color=blue);
Make a table to see what happens to an expression for values of x near a vertical asymptote.
> g:=(2*x-6)/(x-1);
> limtab(g,x=1,right);
x func(x) ---------------------------- 1.100000000 -38.00000000 1.010000000 -398.0000000 1.001000000 -3998.000000 1.000100000 -39998.00000 1.000010000 -399998.0000 1.000001000 -3999998.000 1.000000100 -39999998.00
> limtab(g,x=1,left);
x func(x) ---------------------------- .9000000000 42.00000000 .9900000000 402.0000000 .9990000000 4002.000000 .9999000000 40002.00000 .9999900000 400002.0000 .9999990000 4000002.000 .9999999000 40000002.00
> plot(g,x=-1..3,y=-100..100);
Make a table to see what happens to g for large values of x.
> limtab(g,x=infinity);
x func(x) ---------------------------- .1000000000 6.444444444 10.00000000 1.555555556 1000.000000 1.995995996 100000.0000 1.999960000 10000000.00 1.999999600 1000000000. 1.999999996 0.1000000000E12 2.000000000
Has it really gotten to three? Change to 12 digits to see.
> Digits:=12;
> limtab(g,x=infinity);
x func(x) -------------------------------- .100000000000 6.44444444444 10.0000000000 1.55555555556 1000.00000000 1.99599599600 100000.000000 1.99995999960 10000000.0000 1.99999960000 1000000000.00 1.99999999600 100000000000. 1.99999999996
> Digits:=10;